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Summary. Scheduling problems vary widely in the nature of their constraints and optimiza-
tion criteria. Most scheduling algorithms make restrictive assumptions about the constraints
and criteria and hence are applicable to only a limited set of scheduling problems. A recon-
figurable scheduler is one that, unlike most schedulers, is easily configured to handle a wide
variety of scheduling problems with different types of constraints and criteria. We have im-
plemented a reconfigurable scheduler, called Vishnu, that handles an especially large range
of scheduling problems. Vishnu is based upon a genetic algorithm that feeds task orderings
to a greedy scheduler, which in turn allocates those tasks to a schedule. The scheduling logic
(i.e. constraints and optimization criteria) is reconfigurable, and Vishnu includes a general and
easily expandable framework for expressing this logic using hooks and formulas. The sched-
uler can find an optimized schedule for any problem specified in this framework. We illustrate
Vishnu's flexibility and evaluate its performance using a variety of scheduling problems, in-
cluding some classic ones and others from real-world scheduling projects.

1 Introduction

Most optimizing schedulers solve a limited class of scheduling problems in a single
domain. In contrast, a reconfigurable scheduler can solve a wide range of different
problems across a variety of domains. Using a reconfigurable scheduler, a user should
be able to switch easily between scheduling, for example, taxicab pickups, athletic
fields, factory machinery, classrooms, and service visits.

Although the term “reconfigurable scheduler” is new, the concept of reconfig-
urable scheduling has existed for decades, and a variety of reconfigurable schedulers
have been created. However, the progress in this area has been slow recently. To a
large extent, this reflects the view that the existing reconfigurable scheduling frame-
works, such as AMPL [1] and OPL Studio [2], are as powerful as possible, and offer
little room for improvement. However, we claim that our more recently developed re-
configurable scheduler, called Vishnu, is a significantly better approach that is closer
to the ideal of full coverage of real-world scheduling problems.

Like other reconfigurable schedulers, Vishnu has both an optimizer and a prob-
lem representation framework, as first described in lesser detail in [3]. Unlike other
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such schedulers, the optimizer is a hybrid of a genetic algorithm and a greedy sched-
ule builder. The genetic algorithm generates orderings of the task to schedule, and
the schedule builder adds one task at a time to the schedule in that order. In both the
genetic algorithm and schedule builder are logic hooks where the user can specify
key pieces of the scheduling logic, such as the optimization criterion, the task du-
rations, and amount of capacity consumed. The user specifies these using a formula
language that is similar to those used in modern spreadsheet programs. For each
hook, the user either specifies a formula for computing the result or accepts the de-
fault formula. Vishnu also provides additional components, such as a graphical user
interface and configurable statistical tables.

Section 2 provides a brief background of reconfigurable scheduling and evolu-
tionary scheduling, with the focus of the latter on those schedulers closest to our par-
ticular approach. Section 3 gives an overview of the Vishnu optimizer and problem
representation framework, with an emphasis on a high-level view of its capabilities
and philosophy. Section 4 examines Vishnu in greater detail, describing how each of
the different types of constraints is implemented. Section 5 demonstrates the perfor-
mance and capabilities of Vishnu on both classical scheduling problems and com-
plex real-world problems. While the former are useful for benchmarking, the latter
more accurately showcase Vishnu’s power to allow quick development of solutions
to complex and unique scheduling problems. Section 6 concludes the paper.

2 Background

Our work is at the intersection of two distinct threads of scheduling research: re-
configurable scheduling and evolutionary scheduling. We now discuss each of these
threads.

2.1 Reconfigurable Scheduling: The Concept

A reconfigurable scheduler has two main components: a problem representation
framework and an optimizer (also called a solver). The problem representation
framework provides a means for a user to specify the hard and soft constraints
of a scheduling problem. Hard constraints cannot be violated and determine what
constitutes a legal schedule. Soft constraints are preferences that need not be satisi-
fied, but violating them causes a decrease in schedule quality; hence, they determine
what constitutes a good schedule and define the optimization criterion. Generally, the
framework includes a language to represent these constraints. The optimizer searches
for a schedule that satisfies all the hard constraints and that optimally (or at least
nearly optimally) trades off between the different soft constraints. Preferably, the op-
timizer can solve any problem specified in the framework. Additional components
are also highly desirable. A graphical user interface allows a user to view, modify,
and otherwise interact with the schedules created. A database allows multiple users
to interact with the same scheduling problem. Configurable statistics gathering al-
lows a user to create statistical tables matched to the problem.
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There are some clear advantages to a reconfigurable scheduler [4]. Primarily, it
greatly reduces both the time and cost of developing a scheduler for a new scheduling
problem. If the nature of the scheduling problem changes, it is quick and easy to
modify to incorporate these changes. A reconfigurable scheduler is reusable, so a
user does not have to develop or purchase, and then learn how to use, a different
scheduler for each scheduling problem. So, the existence of an effective and easy-to-
use reconfigurable scheduler would make optimized scheduling available to a much
larger set of users.

A reconfigurable scheduler cannot solve every scheduling problem. There will
always be some type of constraint that cannot be represented in the problem repre-
sentation framework. The goal for a reconfigurable scheduler is to approach the ideal,
handling as many different types of real-world scheduling problems and scheduling
concepts as possible. It should be capable of being easily extended to cover new
concepts to ensure that it can grow towards the ideal. Furthermore, the problem rep-
resentation framework should make it easy for a user to define scheduling problems,
and the optimizer should perform a reasonably efficient search for a schedule.

2.2 Reconfigurable Scheduling: Previous Work

The separation of the problem representation from the schedule generation process,
which is central to reconfigurable scheduling, is not a new idea. Both the mathemati-
cal programming community and constraint programming community have a history
of work on problem representation languages and associated solvers.

For mathematical programming, AMPL [1] is the most popular modeling lan-
guage and serves as a good representative of its class. Competitors and predeces-
sors, such as GAMS [5], have similar functionality. AMPL allows representation of
the algebraic constraints and optimization criteria used in mathematical program-
ming. There exist multiple solvers, including CPLEX [6], that generate solutions to
the problems modeled in AMPL. From the viewpoint of reconfigurable scheduling,
there are two major shortcomings of the AMPL approach. First, the solvers gener-
ally cannot solve all problems representable in AMPL. For example, CPLEX can
only solve problems amenable to linear programming, mixed integer programming,
or convex optimization. Second, there is a limited representation capability in AMPL
for logical, as opposed to algebraic, constraints. As an example, it would be hard to
represent the following constraint in AMPL: “If it is later than 10:00 and a resource
has already done a full hour of work executing tasks and has not rested yet, then the
resource should rest for 10 minutes.”

Constraint programming also has its own languages and frameworks for rep-
resenting scheduling problems. Some examples are CHIP [7], Prolog Il [8], and
ODO [9]. The solvers associated with constraint programming are usually tree-based
search algorithms. One traditional shortcoming of the constraint programming ap-
proach is an inability to express constraints involving complex algebraic expressions.
A second shortcoming is that the tree search method is ineffective at global opti-
mization. Recent developments have addressed these problems. A new constraint
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programming language, OPL [2], allows representation of complex algebraic con-
straints in addition to logical constraints. There are associated OPL solvers, such
as those available in ILOG’s OPL Studio product. Improvements to the tree-based
search technique, such as those described in [10], have increased the optimization
performance. Still, there are a variety of types of constraints that cannot be rep-
resented in OPL, and hence many real-world scheduling problems that cannot be
solved. So, there is still much room for improvement.

Reconfigurable scheduling is a much more recent development in the evolu-
tionary computation, as well as the larger metaheuristic, community. In addition to
Vishnu, there have been some other efforts at making reconfigurable genetic sched-
ulers, including [11] and [12], but these lack the generality of Vishnu.

An area closely related to reconfigurable scheduling is scheduling ontologies [13,
14]. A scheduling ontology is a set of vocabulary, concepts and relations that can
be used to describe and characterize different scheduling problems. It is essentially
equivalent to the problem representation framework component of a reconfigurable
scheduler. Smith and Becker [13] have created a fairly extensive ontology, and we
aim to create a reconfigurable scheduler that can both represent and schedule as
extensive a set of scheduling concepts as possible.

2.3 Evolutionary Scheduling: Previous Work

Genetic algorithms (and, more generally, evolutionary algorithms) have achieved
success in scheduling applications [15]. There are several reasons why evolution-
ary algorithms are well suited for most scheduling problems, including many for
which traditional mathematical programming techniques are inadequate. First, they
are easy to apply to almost any optimization problem, including those with complex
and/or discontinuous constraints/criteria that may derail other algorithms. Second,
evolutionary algorithms are good at searching large and rugged search spaces to find
nearly optimal solutions; furthermore, they can find good, though suboptimal, solu-
tions very quickly. Third, genetic algorithms, with their population-based approach,
allow for easy and effective large-scale parallelization [16], and this can provide a
further performance boost.

The combination of complex constraints with the fact that orderings (rather than
binary or numerical values) are often the primary outputs means that the standard
chromosome representation (a binary string) is often not appropriate for schedul-
ing problems. In fact, the first use of genetic algorithms for scheduling (by Davis
[17]) also introduced one of the first non-standard chromosomes. There has been a
large variety of representations and genetic operators used for evolutionary schedul-
ing. Many of these are targeted to specific scheduling problems, such as the vehicle
routing problem with time windows [18]. Such an approach is necessary in order to
compete in terms of performance with other techniques tuned to specific problems,
whether they be classic scheduling problems or real-world applications.

However, approaches targeted to specific scheduling problems are not useful for
reconfigurable scheduling because of their lack of generality. An alternative is an
order-based genetic algorithm combined with a greedy schedule builder [19, 20].
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This is one of the earliest approaches to evolutionary scheduling, and its advantage
is its universal applicability. The order-based genetic algorithm [21, 22] was devel-
oped based on the recognition that for problems like the traveling salesman problem,
the goal is to find the best ordering of N objects. Its chromosome is a direct repre-
sentation of a permutation of N objects, labeled 1 through N, and its operators are
designed to manipulate chromosomes of this type. Whitley [20] and Syswerda [19]
developed an approach whereby an order-based genetic algorithm can be applied
to more complex types of scheduling problems by adding a greedy schedule builder.
The order-based genetic algorithm generates orderings of the tasks to schedule, while
the greedy schedule builder translates these orderings into schedules, handling the
tasks in the order in which they are presented in the chromosome. This approach is
universally applicable, since it is generally easy to create a greedy schedule builder
for a scheduling problem.

3 Vishnu Overview

Vishnu is more complex than the standard scheduling application because in order
to achieve its generality it needs to handle many different aspects of scheduling. In
this section, we provide a general overview of the approach before exploring many
of the details in the next section.

3.1 The Genetic Algorithm

In our approach, the genetic algorithm generates task orderings and relies on a sched-
ule builder to translate these into actual schedules. The genetic representation uses an
order-based chromosome. Each chromosome is some permutation of the integers 1
through N, where N is the number of tasks to schedule and each number corresponds
to a task.

The only novelty of our genetic representation is that it incorporptesqui-
site constraintslf task A has task B as a prerequisite, then task B must be handled
earlier in the scheduling process than task A. (Note that this does not necessarily
preclude task A from being scheduled at an earlier time than task B.) The genetic
algorithm enforces prerequisite constraints by only generating chromosomes with
orderings that obey all such constraints. A reordering operation is applied to every
chromosome produced (either by mutation and crossover or during initialization of
the population) to maintain these constraints. It works by finding any task that is ear-
lier in the chromosome than any of its prerequisites and changing its location so that
it is directly after the last of its prerequisites.

The crossover operator used by the genetic algorithm is position-based crossover
[19], and its operation is illustrated in Figure 1. It works as follows. A set of positions
is randomly selected (which in the example of Figure 1 are positions 4, 6 and 7). The
elements at these selected positions in the first parent (which in the example are the
integers 4, 6 and 7) are maintained at these positions in the child. The remaining
elements (which in the example are the integers 1, 2, 3 and 5) are used to fill in the
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Fig. 1. The crossover and mutation operators. The *'s indicate the randomly selected positions.
It is assumed that the prerequisites are such that task 4 precedes task 5 and task 2 precedes
task 6.

remaining slots in the child, but will in general be at different positions in the child
than in the first parent. The order of these elements in the child will be the same as
their order in the second parent (which in the example means that 2 is placed in the
first empty position, followed in order by 5, 1 and 3).

Also illustrated in Figure 1 is the mutation operator. It works the same as the
crossover operator except without a second parent to provide the ordering for the
subset of elements that are reordered in the child. Instead, the new order of the shuf-
fled elements is randomly selected.

Each member of the initial population is generated by selecting a random order-
ing and then reordering the entries to obey the prerequisites constraints. The flow of
operations of the genetic algorithm is shown in Figure 2.
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Fig. 2. The operation of the genetic algorithm.
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The genetic algorithm is steady-state, which means that it generates and replaces
one individual at a time rather than an entire population. The advantage of a steady-
state replacement strategy is that the search generally proceeds faster, since the ge-
netic algorithm can use good individuals as soon as they are created rather than wait-
ing for generational boundaries. Since there are no generations, the amount of work
done by the search algorithm is measured by the number of individuals evaluated.
There is a unigueness constraint to ensure that there are no two identical individ-
uals in the population; duplicates generated by the genetic operators are discarded
without being evaluated.

A fitness function is used to evaluate each individual, i.e. each task ordering. The
evaluation starts by feeding the tasks to the greedy schedule builder in the specified
order. The result is a schedule that obeys the required hard constraints. The opti-
mization criterion, specified in a manner discussed in Section 4.3, then produces a
numerical score representing the quality of the schedule, and hence the fitness of the
individual.

There are two primary parameters for the user to specify: the population size
and the number of evaluations. Increasing the population size and the number of
evaluations increases the expected quality of the schedule at the expense of a longer
search. As an extreme, if the user wants to execute just a greedy scheduler and bypass
the genetic search, he can set the number of evaluations to be one.

Other parameters for the genetic algorithm are usually just set to their default
values, as we do for all the experiments described in Section 5. The default prob-
ability of selecting mutation as the genetic operator is 0.5, with default probability
also 0.5 for crossover. Parent selection is done using an exponential probability dis-
tribution, i.e. the individuals in the population are ranked andithéest individual
has selection probability that is some factoas great as thé — 1)% best. This
factor k is set by default to be 1-(10/popSize). There are also parameters that can
specify termination criteria that are alternatives to ending after a certain number of
evaluations. These include: the maximum number of duplicates (which specifies to
stop the search after a certain number of duplicate individuals has been discarded),
the maximum run time (which specifies to terminate after a certain amount of wall
clock time has elapsed), and the maximum age of the best individual (which speci-
fies to terminate if no progress has been made during a certain number of consecutive
evaluations). By default, these parameters are set so that the number of evaluations
is guaranteed to be the termination criterion.

Note that it is possible to use other optimization techniques, such as simulated
annealing or tabu search, to search the space of permutations (task orderings). Which
technique is best depends on the characteristics of the problem, particularly the
search space size and ruggedness. Genetic algorithms are a good match for Vishnu
because they display good performance over a wide range of different search space
characteristics, which is important because Vishnu should be able to handle a wide
variety of different scheduling problems.
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3.2 Greedy Schedule Builder Overview

Our greedy schedule builder needs to be more general than those designed for spe-
cific scheduling problems, such as the active schedule generation algorithm for job-
shop scheduling [23]. While the details of the greedy schedule builder are compli-
cated, the basic idea is simple. We provide a high-level description of the algorithm
with italicized concepts corresponding to some (but not all) of the logic hooks where
the user specifies the logic in a manner explained below.

The schedule builder assigns tasks one at a time in the specified order. For each
task, it looks for the best resource(s) and time for that task, where the goodness of
a resource and time is evaluated based on a spegiigedly criterion The schedule
builder only considers resourceapableof performing the task. For each capable
resource, it checks the legality of scheduling the task at its spetidiiget start time
(The target start time can be the beginning of time, indicating to schedule the task
as early as possible.) If assigning at this time would not violate any hard constraints,
such asvailability or capacity then it uses this time as the sole potential assignment
time for this resource. If assigning at the target start time would violate a hard con-
straint, then the schedule builder finds the two times closest to the target time, one
earlier and one later, at which it is legal to assign the task. Because one or both of
these times may not exist, this search results in 0, 1 or 2 possible assignment times
for this resource. From all the possible resources and corresponding times, the sched-
ule builder selects the best one based on the greedy criterion and schedules the task
there. If no legal resource and time exist (i.e., there is no way to schedule the task
without violating a hard constraint), then this task is not scheduled.

Genoty[ge Schedule L, Resource 1 ‘Setup‘ Task 1 |Setup| Task 3 ‘Wrapup| |

(123) Builder Resource 2 % Setup | Task 2 |Wrapup‘ |

Setup‘ Task 2 ‘Setup‘ Task 1 |Wrapup‘ |

Genotype Schedule Resource 1
—

(2 31 ) Builder Resource 2 Setup‘ Task 3 ‘Wrapup‘ |

Fig. 3. The greedy schedule builder converts two different genotypes (task orderings) into two
different phenotypes (schedules). The diagonally striped area indicates where the resource is
unavailable.

Figure 3 illustrates the operation of the greedy schedule builder for a very simple
scheduling problem. It shows how two different genotypes translate into two differ-
ent phenotypes/schedules. The example makes certain assumptions about what the
user has specified for the scheduling logic. These include the following default be-
haviors: (a) the target start time for all tasks is the beginning of scheduling window,
(b) all resources are capable of performing all tasks, (c) tasks are always available,
(d) there is no multitasking, i.e. a resource performs only one task at a time, and
(e) each task requires only one resource. It also assumes that the greedy criterion
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specifies that given a choice between multiple times at which to schedule a task, the
earliest is the best. For the first genotype, the greedy scheduler starts with task 1.
For resource 1, the task can be scheduled at its target time. For resource 2, the task
cannot be scheduled at its target start time, so the schedule builder looks forward
in time to find the first available slot, which is right after the initial block when re-
source 2 is unavailable. (Looking backward in time yields nothing.) Since the greedy
criterion says that earlier is better, the schedule builder chooses resource 1. Next, it
schedules task 2. The first available slot on resource 2 is earlier than that on resource
1, so the schedule builder assigns task 2 to resource 2. Finally, using the same logic,
task 3 is assigned to resource 1 in the slot after task 1. (Note that each task has three
stages: setup, execution and wrapup, although one or two of these may require zero
time.) For the second genotype, the schedule builder uses the same procedure, but
a different order in which the tasks are scheduled leads to a different schedule. If
the optimization criterion is makespan (i.e. minimize the end time of the final task
completed), then the top schedule is better than the bottom one.

Target Start Time
Genotype
(123 4) —> Resource 1 | | Task4 | Task2 | Task1 | Task3 |

Fig. 4. Another greedy scheduler example, with different problem specifications.

Figure 4 shows what happens for a different set of problem specifications. The
key differences from the prior one is: (a) the target start time is in the middle of
the scheduling window rather than at the beginning, and (b) the greedy criterion is a
penalty proportional to the deviation of the actual start time from the target time, with
lateness penalized 1.5 times more heavily than earliness. The first task scheduled,
task 1, is placed at the target time. The second task, task 2, cannot be assigned at
the target time, so there are two options. Searching forward in time finds the first
available slot is immediately after task 1, while searching backward finds the slot
right before task 1. The greedy criterion selects the earlier slot, since the penalty is
smaller. For task 3, the greedy criterion prefers the slot after task 1 rather than before
task2.

3.3 Problem Representation Framework Overview

Like the greedy schedule builder, the problem representation framework operates on
a simple basic concept, with the complexity in the details. We provide an overview
here and fill in the details in the next section.

The genetic algorithm and greedy schedule builder both export logic hooks where
the user can specify logic specific to a particular scheduling problem. Examples of
such hooks include one that allows the user to specify the task execution duration for
any task, one that allows the user to specify the prerequisites for any task, and one
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that allows the user to specify the optimization criterion. The user defines a formula
for each hook or accepts the default value for that hook.

The formula is then evaluated within context to provide the required informa-
tion to the scheduling algorithm. Establishing the context primarily involves defining
special variables and setting their values accordingly. The two most commonly used
variables ardask and resource which refer to the particular task and/or resource
about which to compute the information. All hooks provide the context variables
tasksand resources which are lists of all the tasks and resources, amuStart
which gives the earliest time in the scheduling window. The scheduling algorithm
sets the context and evaluates the formula in that context, so all the user has to do is
define the formula.

As an example, consider the Execution Duration hook, which specifies the
amount of time that a resource spends executing a task and is discussed further in
Section 4.3. We examine some different possibilities for formulas for this hook, start-
ing with simple ones and then more complex ones.

e Empty- The default for this hook is 0, so if no formula is specified, then all tasks
require O seconds to execute.
5 - This simple formula specifies that every task requires 5 seconds to execute.
task.duration - This specifies that the time to execute a task is given by a field
calledduration in the task. (Note that the ‘. character is the notation used to
access a field inside a structure.)

e task.distance / resource.speed The execution duration is the task’s distance
divided by the resource’s speed.

e entry (resource.durations, task.type) Each resource has a fieddirationsthat
is a list of how long it takes that resource to execute different types of tasks, and
each task has a numerical field that specifies its type. The task execution duration
is the entry in the resource’s list corresponding to the type of the task. (Note
thatentryis one of many predefined functions in Vishnu’s formula language; it
accesses the! element of a list.)

4 Vishnu Details

In this section, we provide details about Vishnu. We start with a discussion of how

to represent data, most notably data about the tasks and resources. We then describe
the formula language and how formulas are evaluated. We next examine in-depth the
different logic hooks and how the scheduling algorithm incorporates them. We con-
clude with examples of how to represent, and hence solve, three classic scheduling
problems using Vishnu.

4.1 Scheduling Data

Vishnu provides a small number of atomic data types plus the ability to combine
these atomic data types into composite data types. Some commonly used composite
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data types are predefined, but each scheduling problem requires the definition of new
problem-specific composite data types.

The atomic data types astring, number boolean andtime, plus a special type,
list, which is a variable-sized set of instances of a single specified data type. The pre-
defined composite data types includeerval, which contains the fields start {iane)
and end (dime), andmatrix, which contains fields numrows (aimbe}, numcols (a
numbe}, and values (&st of numbers.

The problem-specific data types are built from the atomic and predefined types.
The type for a field can itself be another problem-specific type, and hence it is pos-
sible to construct arbitrarily complex data types. For each scheduling problem, one
data type must be declared to represent tasks and another type specified as repre-
senting resources. Each of these two types must have one field that serves as a key,
providing unique identification of instances of this type.

All data for a scheduling problem must be instances of the composite data types
(including the predefined types) defined for that problem. While the primary data (i.e.
what the scheduler needs to schedule) are the tasks and resources, other types of data
(e.g. business rules or distance matrices) may be required to define the scheduling
logic.

Examples of representation of scheduling data are given in Section 4.4 and Sec-
tion 5.

4.2 Formulas: Language and Evaluation

Formulas are built from the following types of components: constants, variables,
accessors, operators, and functions. Accessors provide access to the fields of a data
structure using the notation '’ followed by the field name. (For example, task.id gives
the id field of the data structure referenced by the variable task.) There is a fixed set
of standard arithmetic (+, -, *, /) and comparison operators(=, <, <=, >, >=)
written using infix notation. There is also an expandable library of functions, where
the syntax for invoking a function is fcnNamearg1, ..., argn).

Note thatnull means no value, and all accessors, operators and functions must
handle the case when one or more of their arguments are null, usually by just re-
turning null. A null value can be introduced into a formula by context variables such
asnextor previous(which are null when the task of interest is respectively the last
or first task for its resource) or by functions suchresourceForandtaskStartTime
(which are null if the task is not assigned to a resource).

There are too many functions to list them all here, so we provide a representative
sample:

e if (a, b, ) returns the evaluation df if a evaluates to true and returns the evalu-
ation ofcif ais false, or returns null if the third argument,is omitted.

list (...) combines all of its arguments into a list.

interval (startTime endTimé returns an interval object.

entry (list, indeX returns the element dit atindex

distance(location, location? returns the distance between the two locations.
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max (a, b) returns the maximum of the two numbers.
and (...) returns true if all of its boolean arguments are true.
hasValue(a) returns false ifais null and true otherwise.
withVar (varNamevarValue a) evalutesa with variablevarNamebound tovar-
Value
e mapOver (list, varName @) binds the variablearNameto each element dfst
in succession and evaluatgseturning the results as a new list.
e sumOver (list, varName a) does the same as mapOver except returning the sum
of the results.
e taskStartTime (tasK returns the currently assigned start timdasfk (or null if
taskis not assigned). The functiotsskSetupTime taskEndTime andtaskWrapup-
Time return the other three times associated with a task assignment. The func-
tionsformerSetupTime andformerWrapupTime provide the setup and wrapup
times of an already scheduled task prior to the assignment of another task that
may have caused these times to change.
resourceFor(task returns the currently assigned resourcéask
lastTask (resourc@ returns the last task assignedrésource andcomplete(re-
sourcg returns this task’s end time.

Note that these functions can be classified into different types including mathemati-
cal functions (max, and, distance), control functions (if, withVar), data constructors
(list, interval), list operations (mapOver, sumOver, entry), and schedule accessors
(taskStartTime, taskEndTime, resourceFor).

Many examples of formulas are given in Sections 4.3, 4.4 and 5.

When the formulas are originally written, a compiler transforms them into parse
trees, which are what the scheduler executes to evaluate formulas. As part of the
compilation process, the compiler checks that each formula is correct with respect
to data types, i.e. that the formula returns the data type expected by the hook and
that each argument to each function is of the expected type. Before execution of a
formula, the scheduler ensures that all context-dependent variables, daskatd
resource are set appropriately.

Since the formulas are evaluated many times in different contexts, the efficiency
of formula evaluation is a major aspect of scheduler performance. One important
way in which we have made formula evaluation more efficient is by caching (i.e.
storing) the results of formulas and recalling, rather than recomputing, the results in
the future. The trick is knowing when, both in terms of which formulas and which
contexts, caching results and then recalling them is valid. The validity of cached
results depends on the variables and functions used in the formula. If the formula
contains any schedule-dependent function (i.e. a function whose returned value de-
pends not just on its arguments but also the current schedule, such as taskStartTime
or resourceFor), then the formula needs to be re-evaluated whenever the schedule
or arguments change. If the formula contains no schedule-dependent functions but
refers to both task and resource variables, it needs to be evaluated once for each
task/resource pair. If the formula just references the task (or resource) variable, then
the formula must be evaluated just once for each task (or resource).
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[Hook [Default  [Description |
Optimization Criterion|O Measure of quality of current schedule

Greedy Criterion 0 Measure of quality of assignment @afsk to resource
Target Start Time winStart |Optimal time fortask to begin when assigned tesource
Prerequisites empty list| Tasks that must be scheduled before scheddisk
Execution Duration |0 Seconds required faesourceto performtask

Setup Duration 0 Secondsesourceprepares fotask after doingprevious
Wrapup Duration 0 Secondsesourcecleans up aftetask before doingnext
Breakable false Can a task be executed in discontinuous time intervals?
Resource Unavailable empty list|All intervals of time wherresourceis busy

Task Unavailable empty list|All intervals whentask cannot be scheduled @asource
Capability true Canresourceperformtask?

Capacity Thresholds |empty listMaximum capacity of each type foesource
Capacity Contributionsempty listfHow muchtask adds to each type of capacity @fsource

Capacity Resets empty list|Capacity restored teesourceby performingtask
Multitasking Type none How resources perform more than one task at a time
Groupable false Cantaskl1 andtask2 can be performed in the same group?

Multiresource Reqts |empty list|Set of requirementsask needs satisfied by its resources
Satisfied Requirementempty list|Contribution ofresourceto requirements ofask
Auxilliary Tasks Beforeempty list|Set of auxilliary tasks to schedule before schedulask
Auxilliary Tasks After [empty list|Set of auxilliary tasks to schedule after schedutizgk

Table 1. The scheduling logic hooks, with context variables bolded.

4.3 Hooks and Scheduling Logic

In this section, we discuss all of the hooks currently available in Vishnu. To define the
logic for a scheduling problem, a user must associate a formula with each relevant
hook or accept the hook’s default. Table 1 provides a brief overview of the different
hooks. Sections 4.3-4.3 discuss in greater detail the function of each hook and its role
in the scheduling process. The hooks are divided into different classes to facilitate
our explanation.

[Note that this set of hooks is only a current snapshot. Over time, we have grad-
ually added new hooks, which explains why there is greater functionality available
now than when we first introduced Vishnu in [3]. When we identify aspects of a
scheduling problem that cannot be represented by the current hooks, we may specify
a new hook to provide this functionality (along with updates to the schedule builder
to utilize this hook). Careful consideration is given to ensure that a new hook is
broadly applicable and not just a one-of-a-kind fix.]

Scheduler Directives

The first set of hooks we examine are those that instruct the scheduler how to execute
rather than specifying problem constraints.
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Optimization Criterion is the hook whose formula produces a numerical score
for the current schedule. As discussed above, the genetic algorithm searches for the
schedule with the smallest possible value for this score. All the different tyaxtof
constraintsof the problem must be aggregated into a single score, with the user (i.e.
the person defining the problem) responsible for specifying how to combine them.
The simplest and most common approach for combining penalties from different
soft constraints is a weighted sum, but there are many other possibilities. Since this
hook references the schedule as a whole rather than a particular task or resource, the
only context variables are the standard onasks resourcesandwinStart A simple
example is the formula that implements makespan, which scores a schedule based
on the latest end time of any task:

maxOver(tasks,”t”, taskEndTime(t)) — winStart

Note that subtracting winStart allows the formula to return a number, which is the
expected data type, rather than a time. A more complicated sample formula combines
a penalty for a task being late, a penalty for the time resources spend setting up, and
a penalty for each task that was not scheduled:

sumOver (tasks,”t”, 10 x if (taskStart Time(t) > t.dueDate,
taskStartTime(t) — t.dueDate, 0) + (taskStartTime(t) — taskSetupTime(t))+
if (hasValue(resourceFor(t)), 0, 1000000))

assuming that the task data type has a fal@éDate Other examples of sched-

ule characteristics that might be penalized include resources working overtime or
changes from a previous schedule. There should always be a formula specified for
this hook except when the genetic algorithm is not used (with the user content to
accept the first schedule produced by the greedy schedule builder).

Greedy Criterion is the hook whose formula produces a numerical score for
any potential assignment of a task to a resource. As discussed above, it is used by the
greedy scheduler to compare different possible task assignments to select the best
one, and is essentially equivalent to a dispatch rule. It is often, but not always, an
incremental version of the optimization criterion. Like the optimization criterion, it
can combine multiple subcriteria into a single score. The context varitdsdkand
resourcerefer to the task and resource being assigned. A simple example for the case
when earlier is better is the formula:

taskEndTime(task) — winStart

Another sample formula penalizes both any deviation from the task’s target start time
and an assignment to any resource other than the task’s best resource:

abs(taskStartTime(task) — task.bestTime)+

if (resource.name = task.best Resource, 0, 1000)

Other potential types of criteria include minimizing the travel (setup) time for a task
or finding the least full resource.
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Target Start Time tells the greedy schedule builder the optimal point on a re-
source’s schedule to try to assign a task. As described above, for a given resource,
the greedy scheduler searches forward and backward from the best time for the first
legal assignment times and only considers assignments at these (at most) two times.
This approach limits the number of assignment times to consider and hence the com-
putation required. The context variables tagkandresource Often, the formula for
this hook is not specified, instead accepting the default vain&tart which indi-
cates to schedule the task as early as possible. An example of a case where earlier is
not better is scheduling the delivery of food to a party. If the food arrives too early,
it will not be fresh for the party, but it also should not arrive too late, hence making
the best time: hours before the party. Note that a hard constraint on task availability
(see below) may be used in conjunction to ensure that the food is never scheduled to
be delivered after the party starts.

Prerequisitestells the genetic algorithm which other tasks must precede a given
task in any generated task ordering, and hence will be handled earlier than this task
in the greedy schedule building process. The context variabdsksand the formula
must return a list of task names. The most common reason that task A would have
task B as a prerequisite is that task A is constrained to start after task B finished, and
hence needs task B scheduled to determine its own availability. However, there are
other possibilities. For example, tasks A and B might need to be performed simulta-
neously, and task B is the more difficult of the two to schedule, so task B should be
scheduled first and then task A assigned at the same time. Another example is back-
wards planning, where the last leg of a journey is scheduled first, with the scheduling
process working backwards towards the earlier legs.

Task Durations

A second set of hooks defines the time required for a resource to perform a task. Re-
call that there are three stages for this process: setup, execution and wrapup. Each of
these stages has a hook that tells the time in seconds required for this stage. Another
hook tells whether or not task performance can be broken into multiple disconnected
intervals.

Execution Duration determines the length of time spent in the execution stage
when a resource performs a task. Since this potentially depends on the identity of
both the task and resource, the context variables indasleand resource Some
sample formulas for this hook were provided in Section 3.3. Note that during the
execution stage, the task and resource both must be available, which limits the times
at which the greedy scheduler can place the task.

Setup Duration computes the time a resource spends in the setup stage before
performing a task. It generally depends not just on the task and resource but also
on what the resource was previously doing, i.e. the previous task. Hence, the context
variables includ¢éask resourceandprevious wherepreviousreferences the previous
task and is set to null if the task being performed is the earliest on the resource’s
schedule. For example, a painting machine might have a setup duration of 0 if the
previous task has the same color as the current task and 2 minutes if the previous
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|Setup|Task1| Wrapup | | Setup |Task2|

(a) before adding Task 3

|Setup| Task 1 I\/Vrap” Set ‘Task 3’\/Vrap{ Set |Task 2|

(b) after adding Task 3

Fig. 5. The setup and wrapup durations of already scheduled tasks can change when a new
task is inserted.

task has a different color, as expressed by the formula:
if (previous.color = task.color, 0, 120)

Another example is where the setup time represents travel time between the previous
and current tasks and is proportional to the distance between the geographic locations
of these tasks, as given by the formula:

distance(task.location, previous.location)/resource.speed;

Because of the potential dependency on the previous task, the result of this hook
may need to be recomputed as the greedy scheduler searches through the resource’s
schedule trying to find where the task fits. In this case, it also needs to recompute the
setup duration of the following task when inserting in a spot other than the end of
the schedule, as illustrated in Figure 5. Note that only the resource, and not the task,
needs to be available during the setup stage.

Wrapup Duration computes the time a resource spends in the wrapup stage. It
can depend on the task, the resource and what the resource is doing afterwards (i.e.
the next task), so the context variables incltalk resourceandnext Consider the
example where if a task is the final one on a resource’s schedule, then the resource
needs to spend five minutes cleaning up, but otherwise no time during wrapup. The
formula to capture this is

if (hasvalue(next), 0, 300)

Like Setup Duration, the value for this hook is potentially recomputed not just for
each potential position of the task on the resource’s schedule but also for the preced-
ing task already on the resource’s schedule, as illustrated in Figure 5.

Breakable tells whether the task performance interval can be split into discon-
tinuous sections. For example, if a coffee break for the resources is scheduled for
10:30-10:45, a breakable task that requires an hour can start at 10:00 and be com-
pleted in two intervals, 10:00-10:30 and 10:45-11:15. This hook is just a choice of
two values, yes or no, with the default being no. (There could be further development
in the future of the semantics for breakable tasks, e.g. allowing specification of the
conditions under which tasks can be broken and into what size chunks the task can
be broken.)
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Availability

Another set of hooks specifies when tasks and resources are available to be sched-
uled.

Resource Unavailablespecifies the times at which a resource is not available to
be scheduled. This is independent of the tasks being scheduled, so the only context
variable isresource The formula returns a list of intervals. For example, if a person
works from noon to 8PM on weekdays, then this resource is unavailable on weekends
and between 8PM and noon. Other examples are fixed break times or maintenance
downtimes.

Task Unavailablespecifies the times at which a task is not available to be sched-
uled. Unavailable intervals can be independent of how other tasks are scheduled.
For example, a service call can only be scheduled when a person is around to allow
entrance, or a delivery cannot be scheduled after the time when the item is needed.
However, unavailable intervals can also depend on other task’s assignments. For ex-
ample, it is very common that one task cannot be scheduled to start earlier than the
end time of another task. Another example is that a task may only be allowed to be
scheduled at the same time as another. A sample formula that specifies both that the
task finishes before a due date and that it must wait for the end of another task is:

list( interval(task.due Date, endT'ime), interval (winStart,
if (hasValue(task. followsT ask),
taskEnd Time(taskNamed(task. followsT ask)), winStart)))

Capability specifies whether a particular resource is capable of performing a
particular task. For example, an electrician can perform electrical wiring tasks but
not plumbing tasks, and a painting robot can perform painting tasks but not welding
tasks. The context variables awskandresource and the hook returns a boolean
indicating whether the resource is capable. An example formula that searches for a
particular skill on a resource’s list of skills possessed is

contains(resource.skills, task.skill Required)

Capacities

Capacities are hard limits on what resources can do based on accumulation of quan-
tities over multiple tasks. There are a few hooks for specifying the functionality of
capacity constraints.

Capacity Thresholdsis the hook that specifies for a resource the thresholds
that cannot be exceeded for each type of capacity. In general, capacity has multiple
dimensions. For example, there are limits on both total volume and total weight for
the cargo transported by a vehicle. As another example, an employee may have limits
on both the hours worked in a day and the hours worked in a week. Therefore, the
hook expects a list of numbers that are the thresholds, as in the formula

list(resource.maxW eightCargo, resource.maxVolumeCargo)
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The context variable isesource If there are no capacity constraints, then the hook
should use the default, which is the empty list.

threshold = 40
cap=0 cap=15  cap=30 cap=0 cap=15

y

y A
| Task 1| | Task2 | |Reset5| | Task4
Unassigned: Task 3
(a) task ordering = (123 54)

cap=0 cap=15  cap=30  cap=0 cap=15 cap=30

A A A

| Task 1 r | Task2 | |Reset5 |Task3’ | Task4 |

A

(b) task ordering = (1253 4)

Fig. 6. This examples illustration how capacity can affect scheduling. The reset task, task 5,
must be scheduled prior to other tasks to provide the additional capacity for these other tasks.

Capacity Contributions specifies the amount that a task contributes towards
filling the capacity of a particular resource. A task cannot be assigned to a resource
if it causes the threshold to be exceeded in any dimension. The context variables
includetaskandresource and formula should return a list of numbers of the same
size returned by the Capacity Thresholds hook. The contributions of multiple tasks
are accumulated by a simple vector sum. Note that when multitasking, i.e. a resource
performing more than one task at a time, the capacities are summed and compared at
a particular time, but otherwise they are accumulated over the duration of a resource’s
schedule. Continuing the weight and volume example, a sample formula is

list(task.weight, task.volume)

A more complex sample formula indicates that the amount of fuel required for a fuel
truck to service a fuel request is the amount of fuel requested plus the amount of fuel
for the truck to travel:

list(task.requested Fuel + resource.consumptionRatex
(taskStartTime(task) — taskSetupTime(task)))

Capacity Resetsspecifies when a task causes the accumulated capacity contri-
butions of a resource to be reduced rather than increased. In many cases, the capacity
contributions do not just keep on accumulating over time. At some point, an event
happens that causes the accumulated counts to be reset, or partially reset. For ex-
ample, with the capacity constraint that an employee can only work so many hours
in a day, the total hours worked is reset to zero when a new day begins. Similarly,
the total weight of a vehicle’s cargo is reset to zero when all the cargo is dropped
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off at a central depot. The formula on this hook returns a list of quantities by which
to reduce the accumulated contributions, with the stipulation that they cannot be set
to less than zero. The context variables @k andresource and the default is an
empty list, indicating no reset. An example formula that resets the contributions to
zero if the task is to drop off the cargo is

if (task.isDropoff, list(1000000, 1000000), list(0, 0))

Figure 6 shows the different aspects of capacity, including capacity resets, being
used.

Multitasking

Multitasking is when a resource can perform multiple tasks simultaneously. There
are a few hooks that determine this functionality.

Multitasking Type is a hook that has no formula but instead just a choice among
three options. The first option i®one which means that the resource can only per-
form a single task at a time. This is the default and the most common option. With
no multitasking, for the greedy scheduler to place a task on a resource’s schedule,
it needs to find a place where the time to perform the task, including the setup and
wrapup, does not overlap the time to perform any other task already on the schedule.
The second option igrouped(or batched) multitasking. In this case, a resource can
perform multiple tasks simultaneously but only if all the tasks start at the same time
and end at the same time. For example, consider a ship transporting cargo from one
port to another. If each task is an item to transport, then the ship can perform more
than one task at a time, but only if the items all depart from the same origin at the
same time and travel to the same destination. The capacity constraints set the limit
on how many simultaneous tasks a resource can handle. When assigning a task to
a resource the greedy schedule builder can either add the task to an existing group
or start a new group. The third optionusgroupedor asynchronous) multitasking.

In this case, the resource can perform multiple tasks simultaneously, and there is no
need to synchronize the start and end times of the tasks. Hence, partial overlapping of
the task performance periods is permitted as long as the capacity constraints are not
violated at any time in the new task performance interval. An example of ungrouped
multitasking is when a resource is actually a pool of homogeneous sub-resources,
e.g. a set ofV electricians oM cutting machines.

Groupable is a hook that only applies when using grouped multitasking. It spec-
ifies whether two tasks can be put in the same execution group, i.e. executed by the
same resource at the same time. Context varidhéd andtask2provide references
to the two tasks, and the formula returns a boolean. A sample formula indicates that
two tasks are groupable if and only if they share the same origin and destination
ports:

and(taskl.origin = task2.origin, taskl.destination = task2.destination)
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Multiresourcing

Multiresourcing is when tasks potentially require more than one resource, and this
section describes the hooks that specify this functionality. Note that when a task uses
more than one resource, the greedy scheduler currently assumes that all the resources
are committed to the task for the entire duration of task execution. If the scheduling
logic requires finer-grain control over the times at which the different resources are
busy, then auxilliary tasks (see Section 4.3) should be used instead, with the single
task split into multiple tasks that are tightly coupled.

Multiresource Requirementsproduces a list of numbers, similar to the capacity
thresholds, that enumerate what requirements the resources in aggregate must satisfy.
The context variable isask As an example, if a class needs one classroom, one
teacher, and a certain number of teaching assistants, the formula is

list(1, 1, task.assistantsRequired)

As another example, if a resupply task requires a certain number of gallons of fuels
and a certain number of rounds of ammunition, the formula is

list(task. fuel Required, task.ammoRequired)

The default is the empty list, and hence no multiresourcing.

Multiresource Contributions specifies a list of numbers, similar to the capacity
contributions, that are the contributions that a resource makes towards satisfying a
task’s multiresourcing requirements. As resources are added to a task, the contribu-
tions accumulate until all requirements are fully satisfied or it is proven impossible
to do so. The greedy scheduler adds a new resource to a set of resources potentially
satisfying a task’s requirements only if it provides a non-zero contribution to at least
one of the requirements not yet satisfied. The context variabléasi@ndresource
Continuing the class scheduling example, a sample formula is

list(if (resource.isClassroom, 1,0), if (resource.isTeacher, 1,0),

if(resource.isAssistant, 1,0))

Auxilliary Tasks

Auxilliary tasks provide no direct benefit from being scheduled, and hence are not
included in the task ordering created by the genetic algorithm. They are helper tasks
that allow the primary tasks to complete. An auxilliary task that helps a particular
primary task complete is scheduled at the same point in the scheduling process as the
primary task. As an example, consider trying to schedule an air marshal to monitor
a certain flight from Los Angeles to New York, but there is no air marshal scheduled
to be in Los Angeles at that time. Scheduling a connecting flight as an auxilliary
task can put a marshal in position to perform the primary task. As discussed above,
auxilliary tasks are used for the situation when a task requires a variety of resources
at different times. In this case, the task is divided into multiple tasks, one of which is
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the primary task and the rest auxilliary. For example, a military air mission needs not
just a plane and crew, but also maintenance crews and facilities, runways, airspace,
etc. at different points in its execution.

Auxilliary Tasks Before provides a list of names of auxilliary tasks associated
with a particular primary task that should be scheduled prior to scheduling the pri-
mary task. (Here, prior means earlier in the scheduling process, not earlier in the
schedule.) The default is the empty list, and the context varialbéesks

Auxilliary Tasks After is the same as Auxilliary Tasks Before but indicates the
tasks scheduled subsequent to primary task rather than prior.

4.4 Examples - Classic Scheduling Problems

We now provide three examples of problem specifications using Vishnu. The prob-
lems are well-known and well-studied benchmarks from the operations research lit-
erature. (The OR-Library [24] is a good source of such classic problems and is avail-
able on the web at http://graph.ms.ic.ac.uk/info.html.) They are logically (though
not computationally) simple, and therefore provide good examples with which to il-
lustrate how to apply Vishnu before moving to more logically complex problems.
While the Vishnu formulas can be hard to understand initially, it takes a relatively
small amount of experience for a user to become acclimated to its method of problem
representation.

Traveling Salesman Problem (TSP)

A salesman starts at a given city, travels to a set of other cities visiting each city once,
and then returns to the starting city. The objective is to schedule the visits so as to
minimize the total distance traveled.

[Hook [Formula |
Optimization Criterion|taskEndTime (taskNamed(ity 1))

Prerequisites if (task.index= 1, mapovertasks "t", if (t.index<> 1, t.id)))
Setup Duration entry ¢ask.distancedf (hasvalue previoug, previous.indexl))

Table 2. Scheduling Logic for the Traveling Salesman Problem

The task data typesity, has fields id (a string), index (a number), and distances
(a list of numbers). The resource data typalesmanhas the field id (a string). The
data has one salesman with id = “Salesman”. ThereNawties. Thei*”" city has
index =14, id = “City 4", and distances equal to a list containing the distance from
each city to this one.

The hooks with associated formulas are shown in Table 2. The optimization cri-
terion is the completion time, where this time is equal to the distance traveled. The
prerequisities constraint indicates that the salesman cannot return to the city of ori-
gin, city 1, until he has visited every other city. The setup duration is obtained by
looking up the distance from the previous city in the current city’s list of distances.
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Job-Shop Scheduling Problem (JSSP)

This problem was originally proposed by [25]. There are M machines and N manu-
facturing jobs to be completed. Each job has M steps, with each step corresponding
to a different specified machine. There is a specified order in which the steps for a
certain job must be performed, with each step not able to start until the previous step
has ended. The objective is to minimize the end time of the last step completed.

[Hook [Formula |
Optimization Criterionmaxover fesources”r”, complete €)) - winStart
Prerequisites if (task.preceedingStep> ", list (task.preceedingSt¥p
Execution Duration  |task.duration
Capability task.machine resource.id
Task Unavailable if (task.preceedingStep> ", list (interval

(winStart taskEndTime (taskNameth&k.preceedingStgp))

Table 3. Scheduling Logic for the Job-shop Scheduling Problem

The task data typestep has fields id (string), duration (number), machine
(string), and preceedingStep (string). The resource data tyaehine has field id
(string).

The hooks with associated formulas are shown in Table 3. The optimization cri-
terion is the makespan. If a task is not the first step in a job, its prerequisite is the
step that precedes it, and it is unavailable to be scheduled earlier than the end time
of this preceding task. Only the designated machine is capable of performing a task.
Since there is only one choice of resource, there is no need for a greedy criterion.

[Hook [Formula |

Optimization Criterion|sumOver {asks "t", (taskStartTimet) - taskSetupTimet)) +
if (hasvalue (resourceFob)], 0, 1E7))

Greedy Criterion if (hasvalue (exd, 0, if (hasvalue grevious,
taskWrapupTimetésk - formerWrapupTimegrevious,
taskWrapupTimetésk - winStar))

Prerequisites mapover {asks "t", if (t.latest< task.earliestt.id))

Execution Duration  |extra.serviceTime

Setup Duration distance fask.locationif (hasvalue grevioug, previous.location
extra.depotLocatiop)

Wrapup Duration if (hasvalue fiexd, 0, distancetésk.location
extra.depotLocatioy)

Task Unavailable list (interval vinStart task.readyTime

interval task.latest- extra.serviceTimeendTimé)
Capacity Contributiongask.load
Capacity Thresholds |extra.capacity

Table 4. Scheduling Logic for the Vehicle Routing Problem with Time Windows
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Vehicle Routing Problem with Time Windows (VRPTW)

This is a more logically complex problem than the previous two. It is described in
[26]. There are M vehicles and N customers from whom to pick up cargo. Each
vehicle has a limited capacity for cargo, and each piece of cargo contributes a differ-
ent amount towards this capacity. There is a certain window of time in which each
pickup must be initiated, and the pickups require a certain non-zero time. Each ve-
hicle that is utilized starts at a central depot, makes a circuit of all its customers, and
then returns to the depot. The objective is to minimize the total distance traveled by
the vehicles.

The task data type has fields id (string), load (number), earliest (number), latest
(number), and location (xycoor). The resource data type has fields id (string) and
capacity (number). A third data type has fields serviceTime (number) and depotLo-
cation (xycoor) and has a single instance nameda

The hooks with associated formulas are shown in Table 4. The optimization cri-
terion is the sum of the distances traveled by the vehicles plus a large penalty that
is proportional to the number of unassigned tasks. The execution duration is just the
constant defined iextra The setup duration is the distance from the location of the
previous pickup, or if this is the first pickup, the distance from the depot. The wrapup
duration is nonzero only if this is the last pickup, in which case it is the distance to
return to the depot. Each customer is unavailable before the start of its pickup win-
dow and after the end of this window allowing the time for pickup. The capacity
formulas indicate that the sum of the loads contributed by the different customers
cannot exceed a vehicle’s capacity.

The greedy criterion and prerequisites formulas are actually not part of the prob-
lem specification but directives that help the scheduler find a solution faster. Task B
is defined to be a prerequisite for task A if the end of B’s pickup window is earlier
than the start of A's window. This allows the greedy scheduler to predominantly build
the schedule forward in time. The greedy criterion states that if there is a way to fita
new task to schedule earlier than the last task of a resource, that is the preferred as-
signment. Otherwise, the preference is to find the assignment that packs the schedule
as compactly as possible.

4.5 Additional Scheduling Capabilities

While problem specification and automated schedule creation are the core capabili-
ties required by a reconfigurable scheduler, there are additional capabilities that make
it more practical and generally applicable. We now provide a brief discussion of some
of these additional capabilities that Vishnu possesses.

Dynamic reschedulingis the process of creating a modified schedule from an
existing schedule in response to updates to the data. Many real-world scheduling
problems require the ability to change the schedule “on the fly”, i.e. during the pro-
cess of executing the schedule. Vishnu provides a few mechanisms to support dy-
namic rescheduling, including sticky assignments and frozen assignments [27].
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In many cases, when doing dynamic rescheduling, the scheduler should attempt
to minimize the perturbation from the prior schedule, i.e. maxirseedule stabil-
ity. A stickyassignment is a type of soft constraint that penalizes a new assignment
for a task for differing from the previous assignment for the task. To implement
sticky assignments, the scheduler provides functions priorResource, priorStartTime,
etc. that provide information about the prior assignment. This allows the user to ex-
plicitly include penalties for maintaining schedule stability on the Optimization Cri-
terion, Greedy Criterion, and Target Start Time hooks. Furthermore, tasks provide
data fields that indicate the level of commitment to the current assignment, provid-
ing a priority for maintaining this assignment.

The scheduler also allows an assignment tdrbeen i.e. creating a hard con-
straint that the assignment stay the same upon rescheduling. There are two reasons
why a user might want to make an assignment frozen, which is a hard constraint,
rather than sticky, which is a soft constraint. First, the human scheduler may want
to force a particular assignment without giving an override option to the computer.
Second, it is much more efficient computationally, since tasks with frozen assign-
ments fall automatically into place without the need to search for the best position.
In contrast, tasks with sticky assignments require a scheduling decision to be made,
and in general place the same computational burden on the scheduler as a new and
previously unscheduled task.

Schedule display and interactive schedulingre other features that enhances
Vishnu’s usefulness. Vishnu automatically generates color-coded Gantt charts to dis-
play a schedule. The colors used for the different assignments and the text to display
are specified by the user employing formulas of the same type used to specify the
scheduling logic. The display also includes the capability to generate user-defined
spreadsheet-like data tables, with the data to display also based on formulas.

Vishnu not only displays the schedule for the user but also allows the user to
modify the schedule. It provides various ways for users to make their own assign-
ments, or undo existing assignments, including drag-and-drop. After a user has made
his own assignment of a task to a resource, he can make this assignment sticky or
frozen so that the scheduler cannot just discard it during the next round of schedul-
ing. In this way, the user and automated scheduler can work together to produce a
final schedule.

A composable software architecturanakes a reconfigurable scheduler, such as
Vishnu, applicable in more situations. For certain applications, a single-user stan-
dalone scheduler is sufficient, with any sharing of schedule data done via files. How-
ever, other applications require that the scheduler be integrated as part of a larger
software system. Although a discussion of the details of the software architecture
of Vishnu is beyond the scope of this paper, we do note that Vishnu is composable
in a variety of ways. First, it has a web-based deployment mode, in which sched-
ules are stored in a database and are accessible via a web server. This allows shared
viewing and editing of schedules across multiple locations. Second, Vishnu has been
integrated as the basis for scheduling agents in a multiagent scheduling architecture
[28]. This allows multiple schedulers to cooperate on producing schedules, which
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is important when a scheduling problem is too big and/or too heterogeneous for a
single scheduler. Third, Vishnu provides standard interfaces for communication with
non-scheduling software, including formats for passing data back and forth and a
well-defined interface. This allows easy integration into larger software systems.

5 Evaluation

The traditional metrics for evaluating scheduling algorithms do not measure what
Vishnu is trying to accomplish. Traditionally, evaluation involves selecting a set of
benchmarks that are instances of the particular problem for which the scheduler was
designed. The performance of the scheduling algorithm can be compared to what
other algorithms achieve on the same benchmarks, both in terms of quality of so-
lution and the time to reach the solution. This makes sense as a way to compare
schedulers targeted to a specific problem.

However, this is not the right way to evaluate Vishnu. The goal of Vishnu is to
make it quick and easy to develop optimized scheduling solutions to new scheduling
problems. Therefore, the primary metrics should be (a) the ability to solve a wide
range of problems with just reconfiguration and (b) the ease of solution develop-
ment, i.e. the time and effort it takes a user to configure for a particular problem.
For certain problems, particularly well-studied benchmarks, Vishnu’s generality will
mean that its performance based on traditional metrics will be inferior to that of
problem-specific schedulers, sacrificing raw speed for flexibility and ease of solution
development. For those readers familiar with software development, this tradeoff is
analogous to that between high-level programming languages, such as C++ or Java,
and low-level languages, such as assembly or microcode.

While there is no obvious way to measure the ease of development or range of
problems solved, we can provide sample problems, anecdotes, and an analysis of the
capabilities of Vishnu. Of course, traditional measures of scheduling performance
still matter for Vishnu (just as for programming languages), so we additionally pro-
vide some performance numbers on a few benchmark problems to show that Vishnu
passes the threshold for acceptability. Section 5.1 discusses two sample problems
logically more complex than the benchmark problems as a way to show how easy
it is to develop scheduler for new problems, even if they are complex. Section 5.2
provides speed and optimality performance numbers on some common benchmark
problems. Section 5.3 provides a brief analysis of the capabilities of Vishnu not pos-
sessed by other reconfigurable schedulers, which allow it to solve a wider range of
problems.

5.1 Sample Problems

The following two sample problems demonstrate how a Vishnu scheduler can be
easily specified for problems with greater logical complexity than traditional bench-
marks. These are just a representative set, and a variety of additional problems are
available in the demonstration at the Vishnu web site [29].
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Air Marshal Scheduling

Air marshals are people who fly on commercial airline flights and monitor them for

terrorist, or other illegal, activities. There are not enough marshals to monitor all

flights. Therefore, good scheduling is required to put marshals on as many flights,
particularly those designated as high priority, as possible while not putting undue
burdens on the marshals.

Each marshal has an airport designated as his home base. He should take a set
of flights that form a circuit that eventually brings him back home. fhed con-
straints of the problem are
(a) Allflights leave and arrive at their scheduled times.

(b) The marshal must be located at an airport to take a flight that flies from it.

(c) A marshal must arrive at least an hour early for a flight.

(d) A marshal can work at most 14 hours in a day, with a maximum of 8 hours spent
on flights.

(e) A marshal cannot work during his time off.

Thesoft constraintsare

(a) As many different flights as possible, particularly the high priority ones, should
be covered.

(b) Marshals should return home at the end of the current scheduling window.

Air marshal scheduling is a variation of the air crew scheduling problem. Over
time, a standard approach for air crew scheduling has emerged where the problem is
splitinto two subproblems, crew pairing and crew assignment (or rostering) [30]. The
former creates a set of circuits of flights, each of which ends at the same airport as
it begins. The latter determines which crew members to assign to each route/circuit.
This approach works well for large-scale problems when there are many flights and
many potential crew members. However, it does not scale down well to small num-
bers of crew members (marshals), in which case building the routes cannot be done
independent of knowledge of the crew members’ work schedule.

We were able to create an optimizing solution to the air marshal scheduling prob-
lem within a day using Vishnu. This is very rapid turnaround time given the com-
plexity of the problem. A version is shown in Table 5. A big benefit of Vishnu is the
compactness of the problem representation, requiring only a small number of lines
of formulas.

We now describe how the specifications in Table 5 meet each of the constraints
for the problem given above, starting with thard constraints.

(a) To ensure that flights only depart and arrive as scheduled requires a combination
of formulas on two hooks. Execution Duration constrains each flight to extend
for its scheduled length of time, while Task Unavailable constraints a flight to
not start before its schedule departure or end after its scheduled arrival.

(b) To ensure that a marshal must be at an airport in order to fly from it involves
two hooks. The Setup Duration hook determines at which airport the marshal
is located by finding the arrival airport of the marshal’s previous flight, or the
marshal’s home airport if the current flight is his first. If this airport is not the
departure airport of the current flight, the formula on the hook evaluates to a
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[Hook [Formula |

Optimization Criterion|sumOver (asks "t", if (hasValue (resourceFot)j, O,

if (t.priority = 1, 1, if (t.priority = 2, 0.2, 0.04)))) +
sumOver fesources”r”,

if (lastTask ¢).arrivesWhere= resource.home9, 0.5))
Greedy Criterion task.departsWhencomplete (esourcg
Prerequisites mapover {asks "t2", if (task.departsWhex= t2.arrivesWhen+
entry t2.arrivesWhere.minConnectTime

task.departsWhere.indgx2.name)

Execution Duration |task.arrivesWhentask.departsWhen
Setup Duration if (if (hasvalue previouy,
previous.arrivesWhere task.departsWheye
resource.home task.departsWhe)ye3600, 999999)
Resource Unavailablgresource.unavailable

Task Unavailable list (interval winStart task.departswhen
interval ask.arrivesWherendTimg)
Capability complete fesource +

entry (lastTaskresourcd.arrivesWhere.minConnectTime
task.departsWhere.index = task.departsWhen
Capacity Thresholds |list (28800, 50400)
Capacity Contributiondist (task.arrivesWhentask.departsWhen
if (and (hasvaluepirevioug, not (sReséj, task.arrivesWhen
previous.arrivesWhetask.arrivesWhentask.departsWwhegn-
if (and (not (hasvaluengexyd),
endTime task.arrivesWher: 68400.0),
entry task.arrivesWhere.travelTimggsource.home.indgx0))
Capacity Resets if (and (hasvaluerevious,
task.departsWhenprevious.arrivesWhep 36000,
andOver (tasksForésourcg, "t", or (capacityReset(1.0) = 0.0
taskStartTimet] >= taskStartTimetask))),
list (LE8, 1EB8), list (0, 0))
Auxilliary Tasks Befordlist (entry (entry (if (hasValue (lastTaskesourcg), lastTask
(resourcg.arrivesWhereresource.homeconnectSchedules
task.departsWhere.indelatestConnect
(task.departsWhenwinStar) / 1800 + 1))

Table 5. Scheduling Logic for the Air Marshal Scheduling problem

very large number, making it impossible to assign the flight to the marshal. The
Auxilliary Tasks Before hook checks to see if there is a connecting flight in the
case that the two airports are different. If so, it specifies to assign this flight as a
way to position the marshal for the flight of interest.

(c) To ensure that marshals are at least an hour early for their flight, the Setup Du-
ration evaluates to 3600 seconds when the marshal is at the right airport.

(d) Enforcement of the flight-time and working-hours limitations relies on the three
capacity-related hooks. The limits are set to 8 hours and 14 hours respectively
by the Capacity Thresholds hook. The Capacity Contributions hook specifies
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that the additional flight time is the length of the flight, while the additional

time worked is the length of the flight if this is the first flight since a reset or,

otherwise, the length of the flight plus the time spent between flights.
(e) The marshals’ time off from work is protected from assignments by the Resource

Unavailable hook.

The Optimization Criterion formula embodies theft constraints, penalizing
1.0, 0.4 and 0.02 for each flight not covered with priority 1, 2 and 3 respectively,
plus 0.5 for each air marshal not home at the end of the scheduling window. Like
in the vehicle routing problem discussed above, other hooks assist in achieving the
goals of the Optimization Criterion. The Greedy Criterion hook specifies that the
greedy scheduler should pick the marshal for a flight that would have the shortest
waiting from his last flight to this flight. The Prerequisites hook says that a flight
cannot be scheduled until all flights that could possibly feed it by bringing a marshal
to its originating airport are all scheduled. At that point, the greedy scheduler knows
which marshals will be at the airport and therefore can make an informed decision.
The Capability and Capacity Contributions hooks both help get marshals home by
prohibiting them from traveling too far away without enough time remaining to get
home. Specifying this as a hard constraint rather than just a greedy preference makes
it much less likely that a marshal will not make it home.

Battlefield Supply Scheduling

An agile military requires that its combat units be able to fight for long periods
of time without running out of supplies. To accomplish this, supply trucks drive
around the battlefield, although preferably not the area of actual fighting, delivering
their cargo to the vehicles of the combat units. Each unit has multiple vehicles all
geographically clustered, so it is efficient for one supply truck (or a small number of
supply trucks) to deliver all the supplies of a particular unit. The problem is how to
schedule the deliveries of multiple supply trucks to the different combat units.

There are actually different battlefield supply scheduling problems with different
constraints for each broad class of supplies. Here, we consider two different classes
of supplies: fuel and ammunition (ammo). The problem specifications shown in Ta-
ble 6 show the formulas separately for food and ammunition for those hooks where
the formulas differ. One of the big benefits of Vishnu is that it allows easy adjustment
for the idiosyncracies of variations on a single problem, as illustrated by the ease with
which we can specify different problem specification, and hence schedulers, for the
two types of supplies.

Thehard constraints of the problem are
(a) Each delivery requires five minutes to execute.

(b) The supply trucks travel a time equal to the distance between the points divided
by the truck’s average speed.

(c) Thereis a fixed window of time for each delivery to occur.

(d) (ammo) There are different types of ammunition, so each request needs to be
matched with the types and quantities available on a supply truck.
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[Hook [Formula
Greedy Criterion omitted for brevity
Target Start Time task.desiredTime300

Prerequisites

mapover {asks "t", if (t.DesiredTimg task.DesiredTime.id))

Execution Duration

300

Setup Duration

distance (if (hasValuepfevioug, previous.location

resource.initialLocatioh task.location / resource.speeti3600

Capability (Fuel)

or (task.refilAmount 0, task.recipient= resource.igl

Capability (Ammo)

and (or task.refilAmount 0, task.recipient resource.id,
hasValue (findresource.loadedAmmba’,
a.type= task.desiredTyp®

Task Unavailable

list (interval (vinStart task.earliest,
interval task.latestendTim¢)

Cap Thresholds (Fuel

resource.initialGallons

Cap Thresh (Ammo)

mapOver fesource.loadedAmmba’, a.round3

Capacity Contributionsf (task.refilAmount> 0, O,
(Fuel) withVar (’f", find (task.fuelProfile"f2”,
and (taskStartTimetgsk >= f2.startTime
taskStartTimetésk <= f2.endTimg),
(f.endValue f.startValug * (taskStartTime fasK -
f.startTimg / (f.endTime f.startTime + f.startValug)
Capacity ContributionsnapOver fesource.loadedAmmba’,
(Ammo) if (and (task.refillAmount 0, a.type= task.desiredType

max (1, min fask.desiredQuantity
capacityRemainingésourcetask.DesiredTime
indexOf (resourceFotdsk.loadedAmmp’a”,
a.Type=task.desiredTyp®), 0))

Capacity Resets (Fue

Jask.refillAmount

Cap Resets (Ammo)

mapOver fesource.loadedAmmba”,
if (a.type=task.desiredTypeask.refill Amount0)))

Table 6. Scheduling Logic for the Battlefield Supply Scheduling problem

(e) (ammo) The requested amount is a maximum, and less can be delivered if the

full amount is not available.
() (fuel) A different amount of fuel is required depending on when the fuel is deliv-
ered. The recipient continually consumes fuel while awaiting the delivery, and

hence needs more fuel the later the delivery. A piecewise linear fuel profile spec-

ifies how much is required.

(g) The supply trucks themselves are restocked at fixed times and locations by fixed

amounts.

Thesoft constraintsare
(a) The schedule should fill as many requests as possible.

(b) For each delivery, the time should be as close as possible to the desired time with

preference to earlier than later.

(c) The schedule should minimize travel time/distance of the supply trucks.

29
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The problem specification in Table 6 satisfies ltlaed constraints as follows.

(a) The time for a delivery is specified by the Execution Duration hook.

(b) The travel time is specified by Setup Duration, with the prior location being
either the location of the last delivery or, if this is the first delivery, then the
truck’s initial location.

(c) The delivery window is specified by Task Unavailable.

(d) (ammo) To ensure that the truck carries the right type of ammunition, the Capa-
bility formula checks that the desired type is in the truck’s list of initial supplies.
The quantities of the different types of ammunition are tracked using the capac-
ities, with each dimension of the capacity corresponding to a particular type of
ammunition. Capacity Thresholds indicates that the maximum of each type of
supply is as given at initialization. Capacity Contributions removes the amount
delivered from the truck’s stock.

(e) (ammo) Capacity Contributions sets the amount delivered to be the minimum of
the amount requested and the amount left on the truck but never less than one.

(f) (fuel) Each task has an associated fuel profile that is a list with each element cor-
responding to one piece of the piecewise linear function. Capacity Contributions
finds the right piece and interpolates between the endpoints.

(g) Capacity Resets restores the inventory on the supply truck.

With respect to thesoft constraints for the particular application it was more
important to have fast turnaround than fully optimized schedules. So, we used just
a single greedy schedule generated from a random task ordering. This meant that
we had no need for an optimization criterion. The Greedy Criterion is not shown in
Table 6 because it is a bit too long and is not particularly instructive. However, it is
simple in concept. There are four penalty terms. One penalizes additional travel time.
A second term penalizes the deviation of the actual delivery time from the desired
time, with a much heavier weight for being late. The third rewards putting two supply
tasks from the same unit consecutively on a resource. The fourth penalizes putting
two supply tasks from different units contiguously on a resource. The Prerequisites
formula specifies to perform the scheduling of tasks in the order of their desired
delivery times, although there is much room for randomness in the ordering with
many tasks having the same desired time.

This was a successful application of Vishnu [31]. We were able to quickly build
different types of supply schedulers and easily adjust them to changing specifications
of the problem. We were also able to easily integrate the schedulers into a larger
multiagent system for managing supplies.

5.2 Performance Results

We now provide performance numbers on some benchmark classic scheduling prob-
lems. As discussed above, Vishnu cannot always compete in terms of speed and
optimality with problem-specific algorithms. However, the results on these bench-
marks still provide some idea of how Vishnu will perform on other problems similar

in scale that do not have existing solutions.
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Problem |Population|Evaluations|Optimal |Median|Average|Avg Time

Name Size Score | Score | Score | (M:S)
JSSP-mt06| 1000 5000 55 55 55 0:01
JSSP-mt10 500 10000 930 | 1012 | 1010 0:06

JSSP-mt10| 5000 100000 930 982 982 1:04

JSSP-mt10| 50000 1000000 | 930 961 962 10:21

TSP-bays29 5000 140000 | 2020 | 2028 | 2042 0:11
VRPTW-c101 100 200 827.3 | 828.9| 828.9 | <0:01

Table 7. Summary of experimental results

Table 7 summarizes the results. All the experiments involved ten runs of Vishnu
on the problem, reporting the mean and median scores of the resulting schedule
produced and the mean time for the run to complete. In addition, the table shows
the two parameters that need to be selected for the genetic algorithm, the population
size and the number of evaluations performed, as well as the score for the known
optimal solution to the problem. All the runs were made on a 2.8GHz Pentium 4
processor.

The data sets we used were

e Muth-Thompson 6x6 (mt06) and Muth-Thompson 10x10 (mt10) are two stan-
dard benchmarks for job-shop scheduling [25]. The former has 6 machines/resources
and 6 jobs, and hence 36 tasks. The latter has 10 machines and 10 jobs, and hence
100 tasks. They are available from OR-Library (under the names ft06 and ft10).

e The bays29 traveling salesman problem is a 29-city symmetric problem available
at the TSPLIB web site [32].

e The c101 vehicle routing problem with time windows is one of the Solomon
benchmarks [26]. There are 100 pickups/tasks and 25 vehicles/resources. This is
one of the instances where the time windows are very tight.

Job-Shop Scheduling Problem -The Muth-Thompson 6x6 problem is not a
difficult problem, but it is also not trivial given the 36 tasks to schedule. Therefore,
the ability of the automated scheduler to consistently find an optimal solution in
under 5000 evaluations and 1 second reflects well on both the effectiveness of the
genetic search algorithm (which needs to explore only a very small fraction of the
search space of task orderings) and the efficiency of the greedy schedule builder
(which despite its generality can still build each schedule in approximately 0.2 msec).

The Muth-Thompson 10x10 problem is much more difficult. In fact, despite
much attention, there was no solution proven to be optimal until relatively recently
[33]. The results show three sets of experiments with three different genetic algo-
rithm parameters. The first set of parameters has a small population size, leading to
fast convergence. The second set of parameters is a factor of ten longer before con-
vergence than the first, and the third a factor of ten longer than the second. This illus-
trates two properties of our reconfigurable scheduler (and of many pure genetic algo-
rithms). First, on difficult problems it can quickly find a reasonable solution (within
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8.6% of the optimum in 6 seconds and within 5.6% of the optimum in a minute) but,
even with much longer runs, may not find the optimum solution. Second, there is a
tradeoff between the search time and the expected quality of the solution, which can
be selected explicitly via choice of the parameters.

Traveling Salesman Problem -The 29-city problem used is a small one, but it
is sufficient to show that our algorithm clearly cannot compete with custom designed
algorithms. For example, the Concorde algorithm [34] completes the bays29 prob-
lem in 0.13 seconds, as compared to our algorithm taking over 11 seconds on a much
faster machine. The fact that our algorithm is a genetic algorithm is not the primary
issue, as a variety of competetive genetic algorithms for the traveling salesman prob-
lem attest [35]. There are two main reasons for our algorithm’s shortcomings, both
of which are related to the fact that the traveling salesman problem is purely a rout-
ing problem rather than a true scheduling problem (insofar as time-based constraints
are not involved). First, there is a lot known about the structure of the search space
(particularly when the distances are symmetric), and large performance gains can be
achieved by designing an algorithm that exploits this structure. Second, there is a
large software overhead, since Vishnu builds a full schedule as part of the evaluation
process, while a particular route can be evaluated just by summing the distances.

Vehicle Routing Problem with Time Windows (VRPTW) - The performance
of our algorithm on this problem is respectable, scheduling all 100 tasks in a nearly
optimal fashion in less than a second. Note that the genetic search required little
work, one pseudo-generation, beyond the initial population. The use of a steady-state
genetic algorithm helps the search proceed this quickly, since the best children can
immediately produce their own offspring. Even more important to the performance
is the fact that the Prerequisites and Greedy Criterion formulas were specified so as
to tightly pack the schedule.

Overall Conclusions -The experimental results do support the premise that our
reconfigurable scheduler can provide reasonable performance on a range of prob-
lems. The poor performance on the traveling salesman problem is, in some sense,
the exception that proves the rule. Not only did it require many researcher-years
to discover the much better solutions (which is a magnitude of effort that cannot
be devoted to every scheduling problem), but more importantly it is also a highly
“atypical” scheduling problem because of its very simple constraints, the lack of any
concept of time, and the existence of exploitable structure in its search space.

5.3 Analysis of Capabilities

Comparing different reconfigurable schedulers with regards to their generality and
flexibility to solve a large variety of problems is an inexact and difficult task. There
are no sets of benchmark problems where we can say that if a reconfigurable sched-
uler can solve all problems in set X then it achieves level Y of reconfigurability.
There is a wide range of different types of scheduling problem features that a re-
configurable problem should handle, many of which were discussed in Section 4.3
(multitasking, multiresourcing, capacities, etc.). At this point, the best that we can do
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is list some of the capabilities that help distinguish Vishnu from other reconfigurable
schedulers.
These features include

e Auxilliary Tasks - While their only use in the example problems was to represent
connecting flights, their most powerful use is allowing the decomposition of a
complex task into multiple subtasks with different requirements, yet handling
them as a single entity in the scheduling process.

e Capacity Resets - Capacities are a more fluid concept than just adding up the
individual contributions and comparing to a threshold, and resets are an important
part of this extra complexity.

e Dynamically Computed Constraints - Quantities such as task setup and execution
times, capabilities, task availabilities, and capacity contributions all can depend
on the schedule and can change as the schedule gets built.

e Algorithmically Specified Constraints - Constraints specified using a real, though
simple, programming language can express a wider range of possibilities than
the mathematically specified constraints of mathematical programming or just
picking among some prespecified types of constraints.

e Scheduler Directives - These allow the user to guide the scheduler to produce
better solutions faster, and do so in an easily understandable way and within
paradigm of the problem specification framework. The only scheduler controls
that are not part of this framework are the the population size and number of
evaluations, which the user sets by selecting values rather than formulas.

e Additional Capabilities - Dynamic rescheduling, interactive scheduling, and soft-
ware composability are all important for building real-world scheduling systems.

Even more important than the particular features already in Vishnu is that the
infrastructure allows easy addition of new features and capabilities as required. If
we encounter a scheduling problem that requires a capability not currently contained
in Vishnu, we can add a new hook and modify the greedy scheduler to handle this
new constraint. Since the greedy scheduler does not rely on any idiosyncratic search
algorithm, it is generally the case that it can be modified to incorporate the new con-
straints. We have developed Vishnu this way, starting with very simple functionality
and expanding the capabilities as needed to solve new problems requiring new fea-
tures. We have yet to encounter a problem that we have not been able to handle by
adding new functionality to Vishnu, without affecting existing capabilities.

6 Conclusion

We have developed a powerful framework for representing scheduling problems, and
we have built a reconfigurable scheduler, Vishnu, that can find an optimized solution
for any problem specified in this framework. The approach we have used involves a
genetic algorithm feeding task orderings to a greedy schedule builder as its method
of finding optimized schedules. Hooks and formulas provide a method for users to
define customized scheduling logic. This approach allows easy introduction of hew
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capabilities into the scheduler and problem specification framework, thus allowing
us to make a reconfigurable scheduler that is particularly powerful in its ability to
handle a wide range of scheduling problems with a wide variety of scheduling logic.

The major benefit of Vishnu is that it makes development of optimized schedul-
ing for a wide range of problems simple and inexpensive. There is a vast array
of scheduling problems that are currently solved using manual or non-optimized
scheduling. For most of these problems, our reconfigurable scheduler could provide
a simple and inexpensive optimized scheduling solution.
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