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Abstract

Genetic algorithms are applied to an impor-
tant, but little-investigated, network design
problem, that of reconfiguring the topology
and link capacities of an operational network
to adapt to changes in its operating condi-
tions. These conditions include: which nodes
and links are unavailable; the traffic patterns;
and the quality of service (QoS) requirements
and priorities of different users and applica-
tions. Dynamic reconfiguration is possible in
networks that contain links whose endpoints
can be easily changed, such as satellite chan-
nels or terrestrial wireless connections. We
report results that demonstrate the feasibility
of performing genetic search quickly enough
for online adaptation.

1 INTRODUCTION

There is a growing need for networks to adapt to their
operating conditions in order to maintain acceptable
levels of performance. Networks must increasingly be
able to continue to function effectively despite obsta-
cles such as the disabling of portions of the network
by cyberattacks or large fluctuations in the traffic pat-
terns and service requirements. Network adaptation
potentially enables not just fine-tuning in response to
normal variations but also survivability of the network
and its critical applications in the face of catastrophic
failures and large-scale shifts in operating conditions.

Although dynamic routing solutions (e.g., [2]) to some
of these problems exist, routing has natural limita-
tions. For example, a routing algorithm cannot trans-
mit data between nodes for which cyberattacks have
disabled all connecting paths, nor can it transmit a
high bandwidth of data between nodes which have only

a low-bandwidth path between them. Robust network
adaptation requires changes to the underlying network
infrastructure (i.e. topology and link capacities) in re-
sponse to changes in operating conditions.

Despite this need, the problem of automatic, dynamic
redesign of functioning networks has received little at-
tention. One reason for this is that network links were
traditionally cables and hence not dynamically recon-
figurable like satellite or wireless links. Second, the op-
timization algorithms and computers of the past were
not capable of finding a new network configuration fast
enough to support adaptive reconfiguration.

In this paper, we investigate the use of a genetic algo-
rithm to dynamically redesign a network with recon-
figurable links. Before discussing our work, we provide
a brief review of some of the previous work on the use
of genetic algorithms for (static) network design.

1.1 PREVIOUS WORK

There is not just one problem in network design but
rather a whole family. There are three different compo-
nents of a network architecture: the topology, the link
capacities, and the routing policies. Different prob-
lems work with different subsets of these components.
There are also three different basic criteria on which
to judge a network: cost, reliability, and quality of ser-
vice (QoS). Different problems use different subsets of
these criteria, different measures of these criteria, and
combine the criteria they do use in different ways.

A major focus has been minimal spanning tree prob-
lems (e.g., [16, 1, 4]). The only network component
considered is the topology, and the topology is always
a tree. There have been some novel chromosome rep-
resentations used for these problems, including Priifer
encoding [16, 1] and Huffman trees [8].

When considering factors other than cost, the best
topology is generally a graph rather than a tree. Dif-



ferent problems in optimizing non-tree topologies arise
from different definitions of the evaluation criteria. For
example, [13] and [7] use a probabilistic measure of re-
liability, while [9] and [17] use a measure of reliability
based on redundancy. Given a numbering of all possi-
ble links between all pairs of nodes, graph topologies
have been genetically represented as fixed length bi-
nary strings [13, 17] and as variable-length strings of
unique integers [7].

With knowledge of the network traffic patterns, it is
also possible to optimize the link capacities and rout-
ing policies. In early work, [5] used genetic algorithms
to select a set of link capacities given a fixed topol-
ogy. More recently, with the benefit of greater com-
putational power, researchers have investigated using
genetic algorithms to simultaneously optimize topol-
ogy and link capacities [18, 9] or all three components
of the network (topology, link capacity, and routing
policies) [12, 11]. It is possible to use a single chro-
mosome that represents all the required information
about a network (e.g., [12]) or to use separate repre-
sentations and solve for the different components in
separate (nested) optimizations [11].

2 ADAPTIVE REDESIGN

2.1 PROBLEM STATEMENT

The adaptive network redesign problem is inherently
a dynamic problem, since network traffic patterns, re-
quirements and priorities, and available resources (pri-
marily links and nodes) all change with time. In our
current work, we consider a snapshot of the problem at
a particular time, performing the adaptation by solv-
ing for each snapshot independently.

Let us consider a network that contains both fixed
(wired) links and reconfigurable links. We use a model
for the reconfigurable links that is based upon satel-
lites using a frequency-division multiplexing allocation
scheme. There is a fixed amount of total reconfig-
urable bandwidth available. This bandwidth is unidi-
rectional and is divided into identically sized chunks
called channels. Reconfigurable links consist of one or
more channels configured to have the same source node
and destination node. The bandwidth of the channels
of a reconfigurable link add, but the bandwidths of a
reconfigurable link and a fixed link do not add. In-
stead, the link with the higher bandwidth is used and
the other ignored. Each node has a limit on the num-
ber of channels it can send and receive, which is a type
of node-degree constraint [4].

The givens of the problem include:

e available nodes - This is the set of all nodes not
currently disabled by an attack or failure.

e available fixed links - This is the set of all fixed
links not currently disabled by an attack or failure.
Associated with each fixed link is a source node,
destination node, capacity, and inherent transmis-
sion delay (which is the delay associated with the
medium and does not include the delays due to
queueing). Note that, for the purposes of our model,
all fixed links are unidirectional; bidirectional links
are decomposed into two unidirectional ones.

e available channels - For a given problem, the total
number of channels, bandwidth per channel, and
inherent channel transmission delay are fixed.

e data flows - Each data flow has associated with it
the following information: source node, destination
node, priority rating (a positive integer with smaller
meaning higher priority), protocol (TCP or UDP),
required transmission delay, required dropped pack-
ets, and the statistics of the generated traffic. We
model the traffic as bursts of data of random num-
ber of bytes at random intervals, with Gaussian dis-
tributions for the number of bytes and the size of
the interval. The mean and standard deviation are
the required parameters for each of these distribu-
tions. Note that the quality of service (QoS) met-
rics (i.e., dropped packets and transmission delay)
refer to the service as perceived by the application,
not the network. In particular, a packet that is ini-
tially dropped but successfully retransmitted does
not count as dropped but does register a long trans-
mission delay. Hence, the dropped packets metric
only applies to UDP flows, since TCP resends all
dropped packets.

The variables over which to optimize are:

e configuration of each channel - Zero to all avail-
able channels may be added to the network topol-
ogy. The source and destination nodes of each added
channel must be specified.

The constraints to obey are:

e send and receive limits - The number of channels
with a particular node as its source (destination)
cannot exceed the send (receive) limit for that node.

The optimization criteria are:

1. connectivity - The measure of the degree to which
flows are totally disabled due to lack of connectivity
is the sum over all disconnected flows of i7 where
pi is the priority rating of the flow (recalling that a
lower p; means a higher priority). Note that TCP
flows will be disabled if there does not exist a path in
both directions between the source and destination
(to allow acknowledgements), while UDP flows only



require a path in the forward direction.

2. meeting transmission delay requirements -
The measure of the degree to which the network
does not meet the transmission delay requirements
is the sum over all connected flows for which the
requirement is not met of %(Di —d;), where D; is
the average measured delay (in seconds), d; is the
required delay (in seconds), and p; is the priority
rating of the flow.

3. meeting dropped packets requirements - The
measure for the dropped packets requirements is the
sum over all connected flows for which the require-
ment is not met of %(PZ- —p;), where P; is the aver-
age measured percent of packets dropped, p; is the
required percent of packets dropped, and p; is the
priority rating of the flow.

The three optimization criteria are combined into a

single score using a weighted sum, w157 +wsSs+wsSs3,

where S; is the score for the i*" criterion. The goal is
to minimize this combined score. For our experiments,

we used wy; = 100, wy = 1, and w3z = 1.

2.2 GENETIC ALGORITHM

Representation - Each chromosome is a variable-
length list of reconfigurable link allocations, where
each allocation is a 3-tuple (S, D,C) containing the
source node (5), destination node (D), and the num-
ber of channels (C') connecting the source to the des-
tination. Only allocations with a non-zero number
of channels are included in the list. For example,
the chromosome [(6 3 1) (12 2 2)] indicates a recon-
figurable link with 1 channel from node 6 to node 3,
and a reconfigurable link with 2 channels from node
12 to node 2.

Genetic Operators - We use three operators:

e Crossover - Combine all the allocations from both
parents into a single randomly sorted list. Proceed
through this list including each allocation in the
child chromosome if adding it does not violate any
constraints and if no allocation with the same source
and destination nodes has already been added.

e Local Mutation - Randomly select one allocation in
the parent and randomly choose to either increase
the number of channels by one or decrease it by
one. If the choice was an increase and if this vio-
lates constraints, then attempt to assign the entire
reconfigurable link allocation to a different source
node or destination node; if none of these produces
a legal chromosome, then discard the child.

e Global Mutation - Randomly select a number be-
tween half and all-but-one of the allocations in the
parent. Randomly select this number of allocations

from the parent and add them to the new child.
Complete the child by randomly specifying the re-
maining available channels using the same algorithm
as the initialization procedure, described below.

Initialization - The initialization procedure fills the
initial population with randomly generated chromo-
somes. To generate a random chromosome, it specifies
one channel at a time until some resource (total chan-
nels, node send limits, or node receive limits) has been
fully exhausted. For each new channel, it randomly
selects source and destination nodes that have not yet
exhausted their send and receive limits, respectively.
If there is an existing reconfigurable link allocation be-
tween the pair of nodes, it adds an additional channel
to that allocation; otherwise, it creates a new alloca-
tion between the nodes containing one channel.

Evaluation Function - We have modified NS, ver-
sion 2 [15], a packet-level network simulator, to com-
pute the percentage of dropped packets and the aver-
age transmission delay exhibitted, on a per-flow basis,
by a network during simulation. The evaluation func-
tion first converts the chromosome into a description
of the represented network in the format expected by
NS. It then starts the modified NS and sends NS the
network data. NS performs the simulation and re-
turns the QoS statistics. Finally, the evaluation func-
tion uses these statistics to compute the score given in
Section 2.1. We use a packet-level network simulator
rather than a computationally less expensive approach
in order to compute network statistics with greater re-
alism. However, as we discuss below, it is inefficient
to restart NS from scratch for every evaluation (par-
ticularly because this means restarting its TCL inter-
preter), and this is something we need to change.

Population Management - The genetic algorithm
uses steady-state, worst-one-out replacement. The
population allows no duplicate members. Parents are
selected probabilistically using roulette-wheel selection.
Probabilities are distributed exponentially based upon
rank. The search terminates when the number of eval-
uations reached a threshold.

3 EXPERIMENTAL RESULTS

We had two goals for our experiments and two corre-
sponding sets of experiments. The first was to provide
concrete examples of the types of problems that adap-
tive network reconfiguration can solve. The second
goal was to investigate the performance of the genetic
algorithm, particularly concentrating on scaling with
problem size and the tradeoff between the execution
time and the quality of the solution found.



a) Flows
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Figure 1: The first network in the sequence. Note that
the dotted lines in the topology are the reconfigurable
links and the solid lines are the fixed links.

We approximate the search space size as
(M(M —1))"/N! (1)

where M is the number of nodes and N is the maxi-
mum number of channels. (There are M (M — 1) pos-
sible ways to assign a source and destination node to
each channel, and hence (M (M — 1))V ways to as-
sign sources and destinations to each of N channels.
However, the networks formed are not unique. For
any network with no two channels sharing the same
source and destination, there are N! different ways to
form this network; for other networks, there are less.
Hence, Equation 1 is an underestimate but is a good
approximation when N < M/2.)

All of our timing results were performed on a single
850-MHz Pentium. All times are divided into two com-
ponents: the number of total evaluations, which mea-
sures the effectiveness of the genetic algorithm search,
and the average time per evaluation, which measures
the efficiency of the evaluation function.

In our experiments, all fixed links have a capacity of
1000 kbits/sec (except in the random network exper-
iment) and transmission delay of 10 msecs. Likewise,
all channels have a capacity of 1000 kbits/sec and
transmission delay of 10 msecs.

3.1 ILLUSTRATIVE EXAMPLES

A Sample Adaptation Sequence - We start by
examining a sequence of networks that could be snap-
shots of a single network as its operating conditions
change with time. They illustrate, in a simple-to-
understand scenario, the power of adaptive network
reconfiguration.

There are three networks in the sequence, each with a
maximum total of four channels. The first network in
the sequence has five nodes. The traffic flows, pictured
in Figure 1la, are typical of a server (node 1) with mul-
tiple clients (nodes 2-5). The clients communicate only
with the server and not with each other. The server
sends 400 kbits/sec to each client, while each client

b) Topology

Figure 2: The second network in the sequence. Note
that the heavier lines in the flows indicate higher pri-
ority traffic.
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Figure 3: The third network in the sequence.

sends 40 kbits/sec to the server, all using the TCP
protocol. The priorities are all 5, and the required
latency is 10 msecs (since it is using TCP, dropped
packets are not a criterion). There exist bidirectional
fixed links between nodes 1 and 4 and between nodes
1 and 5. Each node has a limit of 3 send channels and
3 receive channels.

Clearly, the best solution is the one shown in Figure 1b,
with four reconfigurable links, each containing 1 chan-
nel, that effectively form bidirectional links between
nodes 1 and 4 and between nodes 1 and 5. The solu-
tion thus provides a single-hop path for all flows.

The second network in the sequence is the same as
the first except for the addition of two high-priority
(priority 1) flows, one from node 2 to node 3 and the
other from node 3 to node 2 (e.g., a teleconference be-
tween two CEOs, or communication between two units
in battle). The flows are shown in Figure 2a. The new
optimal configuration is that shown in Figure 2b, since
it provides full connectivity, a one-hop connection for
all high priority flows, and a maximum delay of two
hops for the lower priority flows.

The third network in the sequence is shown in Fig-
ure 3a and is the same as the second except that all
the fixed links have been disabled (e.g., due to a co-
ordinated cyberattack). It is now impossible to fully
connect all the nodes (4 unidirectional links can con-
nect at most 4 nodes), so there is a choice about which
node to leave out of the network. The best configu-
ration is to use the channels to form a ring network
between the four of the nodes, three of which must be
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Figure 4: The first bottleneck network.

nodes 1, 2 and 3. An example of such a network is
shown in Figure 3b.

The genetic algorithm finds all solutions always in well
under 500 evaluations. To perform 500 evaluations
requires 4 minutes, or 0.48 secs per evaluation. Almost
all of this time (between 0.4 and 0.45 seconds) is spent
restarting NS; by eliminating this restart, we could get
the runtime down to under 30 seconds.

Bottleneck Networks - We consider two more exam-
ple networks, larger than the previous ones. Both have
paths of fixed links with sufficient capacity to handle
the traffic for any individual flow, but there exists a
bandwidth bottleneck when considering the flows in
aggregate. Reconfigurable links are used to relieve the
bottleneck.

The first “bottleneck” network is shown in Figure 4.
Each of nodes 1-5 sends data to each of nodes 6-10.
All 25 flows are identical: transmitting an average of
200 kbits/sec, using the UDP protocol, having prior-
ity 2, and requiring 0% dropped packets (with no re-
quirement on latency). There are four available chan-
nels. Without the benefit of the reconfigurable links,
all 5000 kbits/sec of the aggregate traffic would travel
across the central link between nodes 11 and 12 (which
has capacity of only 1000 kbits/sec). An optimal solu-
tion is shown in Figure 4, using the reconfigurable links
(dotted lines) to relieve this bottleneck by bypassing
the central link. (There are five equivalent solutions.)

The second bottleneck network is shown in Figure 5.
Each of nodes 1-10 sends data to each of nodes 11-
20. All but one of the 100 flows are identical: sending
an average of 50 kbits/sec, using the UDP protocol,
having priority 100 and required dropped packets 0%
(with no requirement on latency). The flow between
nodes 1 and 11 differs from the other flows in that
it has priority 1, which is much higher than the oth-
ers, and that it has a required latency of 10 msecs.
There are six available channels. As with the first
bottleneck network, without reconfigurable links, all
5000 kbits/sec of traffic would travel across the cen-

b) Topology

Figure 5: The second bottleneck network. Note that
five channels form a single high-capacity link between

nodes 21 and 22, replacing the original lower-capacity
fixed link.

tral link between nodes 21 and 22 (which has capacity
of only 1000 kbits/sec). The solution is pictured in
Figure-5b: use five channels to relieve the bottleneck
by replacing the central link with a higher-capacity re-
configurable link, and use the sixth channel to directly
connect nodes 1 and 11 and thereby provide the re-
quired latency. Note that in going from the first to
the second network the optimal strategy changes from
bypassing the central link to building up the central
link.

The genetic algorithm consistently finds an optimal
solution to the first bottleneck problem in under 1000
evaluations. These 1000 evaluations required 20.5 min-
utes, an average of 1.23 seconds per evaluation. Ac-
cording to Equation 1, the search space size is 1.3x107.
The genetic algorithm consistently finds the solution
to the second problem in under 10,000 evaluations,
requiring 394 minutes (2.36 seconds per evaluation).
The search space size is 1.4x10'3.

3.2 PERFORMANCE INVESTIGATIONS

We investigate the performance of the genetic algo-
rithm on families of networks, where all the networks
in a family have the same basic statistical properties
but different sizes. This permits us to investigate the
scaling properties of the genetic algorithm as a func-
tion of the size of the network. We used five different
families, one family of “ring” networks plus four fam-
ilies of random networks.

For each network used to explore performance, we per-
formed the same set of experiments, running the ge-
netic algorithm ten times with each of the following
sets of parameters:

e popsize = 20, probdecay = 0.7, mazevals = 100

e popsize = 40, probdecay = 0.8, mazxevals = 300

e popsize = 100, probdecay = 0.9, mazxevals = 1000

e popsize = 300, probdecay = 0.967, mazevals = 3000
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Figure 6: The 8-node, 4-channel ring network.

e popsize = 1000, probdecay = 0.99, mazevals = 10000
Here, popsize is the population size, probdecay is the
parameter that determines the exponential distribu-
tion of parent selection probabilities, and mazevals is
the number of evaluations before terminating the run.
A small population size and high selection pressure
(small probdecay) mean that the genetic algorithm will
converge (through loss of diversity) quickly, and are
hence appropriate for a short run.

Ring Networks - We start by examining perfor-
mance on a family of highly contrived networks, which
we call “ring” networks. This family of networks has
three important properties. First, it contains networks
with arbitrarily large and small numbers of nodes and
available channels, hence allowing an investigation of
how the algorithm scales with network size. Second,
each network has a known best solution and hence al-
lows comparison with this known optimum. Third,
the optimization problems are especially difficult for
a genetic algorithm and hence provide worst-case sce-
narios.

A member of this family has N channels and a net-
work with M = kN nodes, where k and N are pos-
itive integers. There are M identical flows, with one
flow from node i to node (i — 1) for each i = 2, ..., M
and one flow from node 1 to node M. Each flow uses
the TCP protocol, has a required latency of 10 msecs,
and transmits % kbits/sec. There are M fixed links,
one from node (i — 1) to node ¢ for each i = 2,..., M
and one from node M to node 1. The fixed topology
requires packets to travel (M — 1) hops. An optimal
placement of reconfigurable links connects every k'"
node in reverse order from the fixed links and reduces
the number of hops to k. Figure 6 shows this net-
work when M = 8 and N = 4, along with an optimal
solution. (The other optimal solution is obtained by
rotating each reconfigurable link one node clockwise.)

This problem is very difficult for a genetic algorithm
because of the existence of multiple completely dis-
tinct solutions (i.e. solutions that have no reconfig-
urable link in common). The genetic algorithm has
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Figure 8: Modeling the tradeoff between solution qual-
ity and number of evaluations for the 16/8 ring net-
work.

trouble keeping the building blocks from these differ-
ent solutions separate. This is generally not a problem
in less contrived networks.

We ran experiments on ring networks with six different
node/channel (i.e., M/N) configurations: 8/4, 12/6,
16/8, 20/5, 20/10, and 40/10.

For the 16/8 network and for each of the genetic al-
gorithm parameter sets, Figure 7 shows the progress
of a run (averaged over ten independent runs) plotted
as the value of the best individual versus the number
of evaluations (i.e., the number of configurations tried
so far). Note how the smaller population with greater
selection pressure starts out better but quickly stops
making progress due to convergence. A larger popula-
tion and smaller selection pressure requires longer to
converge but eventually does better by exploring more
of the space.



Net- | Search 100 300 1000 | 3000 | 10000 | A B C FEgs FEy9 Secs/
work | Space | Evals | Evals | Evals | Evals | Evals Eval
8/4 4.1E5 .75 27 .20 18 18 .18 | 1100 | 1.65 6 16 0.69
12/6 7.3E9 1.90 1.14 .80 48 31 271 22 | .59 | 210 3800 0.93
20/5 | 6.6E10 5.01 3.30 1.97 1.48 1.27 | .97 | 57 | .572 | 190 3100 1.28
16/8 2.7E14 2.8 2.2 1.70 1.12 .69 .36 12 337 | 7300 | 8.6EH 1.24
20/10 | 1.7E19 4.5 3.3 2.6 1.88 1.15 44 | 17 | 315 | 1.3E4 | 2.2E6 | 1.55
40/10 | 2.4E25 13.2 11.0 7.5 5.6 3.8 1.9 54 | .332 | 8300 | 1.1E6 | 3.20
Table 1: Results for the ring networks

Table 1 provides a summary of the results for the dif- Net A B C | Eos | Eog | S/E
ferent ring networks. Each row contains the results 8/4 .064 | 91 | 697 | T4 740 | 0.69
from one network. Column 1 contains the network 12/6 | .038 | 150 | 1.63 | 6 17 0.90
name, and column 2 has the search space size as given 20/5 | .201 | 2.8 | .599 | 150 | 2200 | 1.43
by Equation 1. Columns 3-7 contain for each of the 16/8 | .078 | 5.7 | .821 | 38 | 270 | 1.10
five parameter sets the value of the best individual at 20/10 | .092 | 2.5 | .523 | 300 | 6700 | 1.49
the end of a run averaged over the ten runs. The val- 40/10 | .30 11 | 512 | 350 | 8100 | 3.50

ues in columns 3-7 provide five data points for the map
between the number of evaluations performed and the
quality of the solution.

As more evaluations are performed, the expected value
of the best solution asymptotically approaches the op-
timal value. This leads us to a model for this relation-
ship of the form

V=A+BE° (2)

where V' is the expected value of the best individual,
E' is the number of evaluations, and A, B and C are
constants determined by the data. The constant A is
the value of the best possible solution, which is known
for the ring networks. We use the five data points to
do a least-squares regression analysis to find B and C.
We report A, B and C for each network in columns
8-10 of Table 1. Figure 8 shows an example graph of
this curve for the 16/8 ring network.

The constant C' measures on average how quickly the
search approaches the optimal solution. After F eval-
uations, the search has roughly proceeded 1 — E~¢ of
the way from a random solution to the best solution.
To find a solution that is a fraction f of the way to the
optimal solution therefore requires roughly (1 — f )%1
evaluations. In columns 11 and 12 of Table 1, we re-
port the number of evaluations required to achieve 95%
and 99% of the optimal solution, given by

Eos = 207, Egg = 100¢ (3)
Figure 8 shows these values for the 16/8 ring network.

Random Networks - We next examine optimization
performance on a set of randomly generated networks.
While ring networks provide a worst-case optimization
problem, we also would like results for more typical

Table 2: Results for sparse/light random networks

Net A B C E95 Egg S/E
8/4 |.102 | 13 | 1.10 | 15 66 1.49
12/6 | 1.53 | 11 | .381 | 2600 | 1.8E5 | 1.86
20/5 | 2.74 | 7.5 | .364 | 3800 | 3.1E5 | 3.25
16/8 | .99 | 8.6 | .434 | 990 | 4.1E4 | 2.70
20/10 | 2.07 | 12 | .440 | 910 | 3.5E4 | 3.34
40/10 | 6.35 | 21 | .330 | 8800 | 1.1E6 | 7.04

Table 3: Results for sparse/heavy random networks

networks. While we do not know the best solution
for these networks a priori, we can still use a regres-
sion analysis similar to (although less accurate than)
that used for the ring networks to estimate how per-
formance varies with the number of evaluations.

Given a specified number of (i) nodes, (ii) available
channels, (iii) bidirectional fixed links, and (iv) traf-
fic flows, our software randomly generates a network
with these dimensions. The random components in-
clude: (i) the fixed topology, (ii) the fixed link capaci-
ties (1000, 2000 or 3000 kbits/sec), and (iii) the source,
destination, priority (1, 10 or 100), protocol (UDP or
TCP), and bandwidth (100, 400 or 1000 kbits/sec) of
each flow. Required latency and dropped packets were
always 0.

For the experiments, we have used families of six net-
works. For each family, the number of nodes (M) and
satellite channels (V) are the same six pairs of values
as for the ring networks, hence permitting comparisons
of optimization performance between networks with
the same search space size. The number of fixed links



Net A B C Eys Eq | S/E
8/4 |.045 | 1.2 | .520 | 320 | 7000 | 0.75
12/6 | .024 | .65 | .760 | 52 430 1.02
20/5 | .089 | 1.2 | .640 | 110 | 1300 | 1.76
16/8 | .049 | 1.6 | .773 | 48 390 1.35
20/10 | .066 | 1.0 | .540 | 260 | 5100 | 1.77
40/10 | .159 | 1.9 | .382 | 2500 | 1.7E5 | 4.82

Table 4: Results for dense/light random networks

Net A B C E95 Egg S/E
8/4 .103 | 150 | 1.48 8 22 1.62
12/6 55 | 120 | 1.16 13 93 2.19
20/5 | 1.04 | 23.6 | .823 | 38 270 4.16
16/8 | .33 | 4.1 | .576 | 180 | 3000 | 3.14
20/10 | 0.67 | 3.7 | .368 | 3400 | 2.7E5 | 4.04
40/10 | 1.67 | 42.3 | .696 | T4 750 9.59

Table 5: Results for dense/heavy random networks

is pM and number of flows is ¢M, where ¢ and p are
constant for a family. We have used ¢ = 1 and ¢ = 2,
referred to as “sparse” and “dense” respectively, and
p =1 and p = 4, referred to as “light” and “heavy”
respectively, leading to four families of random net-
works: sparse/light, sparse/heavy, dense/light, and
dense/heavy. For each of these families of random net-
works, we have done the same experiments and anal-
ysis as for the ring networks, except that we do not
know apriori the optimal solution and hence the value
to use for the A term. We instead estimate the opti-
mal solution as the best solution found in any of the
ten runs for any of the genetic algorithm parameters.
The results are shown in Tables 2-5.

Analysis of Results - The central question is
whether the optimization algorithm will support on-
line adaptation by producing good enough configura-
tions fast enough. While there is no clear threshold
defining good enough or fast enough, we take 95% of
the optimal solution in ten minutes to be our standard.

For small networks (< 20 nodes and < 5 channels), the
optimization algorithm will support online adaptation.
It will consistently find the 95% solution in under 10
minutes. Once we fix the NS restart problem with the
evaluations, it will do even better, potentially reaching
the 98% or 99% solution in the given time.

For mid-sized networks (< 40 nodes and < 10 chan-
nels), the optimization algorithm will be sufficient for
online adaptation only with the help of additional
hardware to speed the optimization. Genetic algo-
rithms are inherently parallelizable, with a near linear
speedup as a function of the number of processors up

to a large number of processors [3]. Assuming a 100-
processor cluster providing a factor of 100 speedup, all
of the reported networks would reach their 95% solu-
tion within ten minutes.

For larger networks, the highly superlinear (potentially
exponential) scaling of the algorithm means that more
hardware will not address the scaling problem. In-
stead, fundamental improvements to the algorithm are
required.

One potential source of improvements to the genetic
algorithm is to use the fact that network adaptation is
a continuous process. A solution that was good a few
minutes earlier is still most likely a good solution. Par-
ticularly for big networks, the current optimal configu-
ration is likely only at most a small perturbation from
the previously optimal configuration. By including the
previous best configuration in the initial population of
the genetic algorithm to determine the current config-
uration, the algorithm gets a big head start and can
find a good solution in far less time [14].

Another approach to improving the genetic algorithm
is to incorporate heuristics, such as some of those in
[10] into the algorithm. These heuristics can be used
both when generating the initial population and as
part of the genetic operators, and will often improve
the search by a large amount [6].

A second question is how search time varies with the
network. The size of the search space is the single
biggest factor influencing search difficulty. It grows
very quickly with the number of nodes and channels,
resulting in a rapid growth in the number of evalua-
tions required to find a good solution. (This growth is
shown in Tables 1-5 as a general increase in Fg; and
Eq9 with search space size.) However, when we exam-
ine the random networks, we see that there are some
networks with large search spaces that are much eas-
ier to solve than others with smaller seach spaces (e.g.,
see Table 4). Also, the random networks with heavy
traffic tend to be more difficult to solve than networks
with the same size search space but with light traffic.
This is likely because more flows mean more tradeoffs
and hence more difficult decisions. However, as both
the ring and random networks show, even networks
with light traffic can present difficulties.

4 CONCLUSION

We have introduced an important, little-investigated
problem, that of determining at any given time the op-
timal configuration of a reconfigurable data network.
Finding a good configuration is a critical part of the
process of adaptively reconfiguring a network online.



Adaptive network reconfiguration offers the benefits of
survivability in the face of major changes in network
operating conditions and performance fine-tuning in
response to minor changes in operating conditions.

We have developed an algorithm for solving the prob-
lem using a genetic algorithm. In its current form, it
is too slow for online adaptation. However, the sim-
ple step of distributing the evaluations of the genetic
algorithm across many machines would make it fast
enough for small and mid-sized networks. Improve-
ments to the core algorithms of the genetic algorithm
could potentially make it fast enough for networks with
large numbers of nodes and reconfigurable links.

Future work should focus on making adaptive network
reconfiguration a reality rather than just a possibility
through (i) speeding the optimization by tuning the
algorithm and (ii) integration with actual networks.
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