How to Make Scheduling Research Relevant

David Montana
BBN Technologies
10 Moulton Street, Cambridge, MA 02138
dmontana@bbn.com

Abstract

Scheduling research has been an active field
for the last forty or so years. Over the
decades, many techniques have been devel-
oped for application to a variety of differ-
ent problems, and we have learned a lot
about how to perform scheduling. There have
been some large successes in the application
of automated scheduling to real-world prob-
lems. However, the reality remains that most
scheduling tasks that could potentially bene-
fit from automated scheduling are performed
manually, and if not, then by an algorithm
that produces highly suboptimal schedules.
The question is how to focus future sched-
uling research so as to better address the
needs of the real world and hasten the adop-
tion of automated, optimized scheduling for
a wider range of real-world problems. I will
discuss some of the reasons for the gap be-
tween scheduling research and practice and
some approaches to bridging this gap.

1 Analysis of Current Problems

Many organizations and individuals with scheduling
problems would need scheduling technology to provide
some or all of the following capabilities before it would
make sense for them to utilize automated scheduling.

The automated scheduler should solve the
users’ particular problem, not some simplified
abstraction. FEach user has their own scheduling
problem, with a unique set of constraints and crite-
ria governing how the scheduling should be done. A
scheduler that only solves a different problem with a
different set of constraints and criteria is of no use to a
user. An example of this is manufacturing. For years,

researchers have been solving job-shop and flow-shop
problems. However, the scheduling algorithms they
devised are generally of no use to companies with ac-
tual problems in scheduling of manufacturing. The
real-world problems are different, and often more com-
plicated, than the research problems. Hence, with the
exception of those larger companies that have the re-
sources to develop custom solutions, most manufactur-
ing is still scheduled manually.

The automated scheduler should produce
schedules that are good enough and execute
fast enough. Scheduling is computationally complex,
with most scheduling problems being NP-complete.
As the size of a scheduling problem grows, the time
it takes to find the globally optimal solution increases
very quickly. Usually, in order to find a schedule in an
acceptable amount of time, a tradeoff has to be made
in terms of accepting a less-than-optimal schedule.
The parameters of this tradeoff are highly problem-
dependent and user-dependent; some problems require
schedules quickly even if they are highly suboptimal
while others require nearly optimal schedules even if
this takes a long time. There is a need for algorithms
that not only provide better schedules faster but also
that allow the user to make explicit tradeoffs between
schedule quality and computation time.

The total cost of the automated scheduling sys-
tem should be low enough to justify the return
on investment (ROI). Before committing to adop-
tion of automated scheduling for a particular problem,
an organization (or individual) will do some type of
cost-benefit analysis to make sure that the benefits
justify the costs. While most researchers concentrate
only on the scheduling algorithm, the development of
an algorithm is just the beginning of the costs. The
automated scheduler must be part of a full system that
includes (i) displays that involve the user and (ii) in-
terfaces to the data sources and sinks. In the case

when the organization can purchase or download a pre-
existing software package, there are still the purchase
price and the costs of customizing the system for their
particular situation. After these initial costs, there are
also the costs of training the operators as well as ad-
ministering and maintaining the system. With most
current technology, unless the organization has a lot of
money riding on the quality of the schedules, it cannot
justify the investment in automated scheduling. The
total costs of an automated scheduling solution must
be greatly reduced before smaller organizations and
individuals will use one.

There should be some easy way to provide con-
fidence that an automated scheduler will solve
the users’ problem. Most organizations are con-
cerned about the risk that their investment in an au-
tomated scheduler will not pay off because the auto-
mated scheduler will not do its job correctly. Even
when the expected ROI is sufficient to justify the
project, many organizations will avoid adopting an au-
tomated scheduler because of this perceived risk. To
a certain extent, success breeds confidence; being able
to demonstrate an automated scheduler working on
a similar problem allays fears. However, it is also
very helpful to have a rapid prototyping capability,
i.e. some way to quickly create a demonstration that
is sufficiently similar to the real problem to inspire con-
fidence (as well as providing a good way to learn about
the problem).

The automated scheduler should be easy to in-
tegrate with its data sources and sinks. The
scheduler needs to get the problem data from some-
where. While it is possible for the user to enter the
data by hand or create a file with the data, in the
real world the data usually comes from another appli-
cation. This could be a large relational database, or
a smaller application such as Excel or Access, or even
another scheduler (e.g., in a supply chain). The sched-
uler also often needs to write its schedules to other
applications, e.g. billing or payroll applications, that
utilize the schedules. Developing these interfaces from
scratch can be difficult and time-consuing, and can be
a major driver of the total cost, so it is best to make
this integration as easy as possible.

The scheduling system should support the “ac-
cessories” needed to make it practical. For most
users, an algorithm that automatically creates sched-
ules from scratch is only the beginning of what they
need from an automated scheduling system. They
also need dynamic rescheduling, i.e. an algorithm that
monitors a schedule as it is executed and repairs it as

necessary. Furthermore, they need to get humans in-
volved in the scheduling process. They need displays
that allow humans not only to visualize schedule but
also to provide inputs to the scheduler on what to do,
i.e. mixed-initiative scheduling. Many scheduling algo-
rithms do not support dynamic rescheduling or mixed-
initiative scheduling, and this can become a big issue
when there is a need for these capabilities.

2 Potential Solutions from the
Researchers

Here are some steps that the scheduling research com-
munity could take to address the problems from the
last section.

Scheduling researchers should solve real-world
problems more often. Yes, it is still very impor-
tant to develop theory and general-purpose tools not
specific to a particular problem. However, the work
on theory and tools that is not targeted at, or at least
based on, real-world problems often ends up being ir-
relevant. Therefore, it is important that scheduling re-
searchers seek out people and organizations with real
problems to solve. If the organization is big enough
and the problem is important enough, they may pay
you to help them solve it. Even if the funding comes
from a third party, it is worth finding real problems.

[Researchers using evolutionary algorithms (and more
generally metaheuristics) for scheduling have been
good about maintaining a focus on real-world prob-
lems, partly because evolutionary algorithms are par-
ticularly well suited to the representational complexi-
ties of real-world scheduling (see below). One pointer
to some applications is [Montana, 1998].]

The scheduling research community should cre-
ate and promote a better, expanded set of
benchmarks. There is a saying that “you get what
you measure”. Currently, the commonly used bench-
marks for scheduling, such as the job-shop schedul-
ing problem and traveling salesman problem, do not
give a good indication of utility for most real-world
problems. One reason is that the scheduling logic of
the benchmarks is too simple (even when the prob-
lems are computationally complex). Real-world prob-
lems tend to have much more convoluted constraints
(on what consitutes a legal schedule) and criteria (for
what makes a good schedule). Second, the only vari-
ability in the different instances of the benchmarks is
the numbers used. This is unlike the real world where
there is variability not just in the numbers but also
in the scheduling logic between problems that are os-

tensibly the same. Third, the benchmarks are “static”
and reflect none of the dynamic updates and inter-
action with human operators that characterize many
real-world problems.

Fixing the problem with benchmarks will take a con-
certed effort. The first step is defining these bench-
marks. There are some more realistic benchmarks
available to the public, but a greater variety would
be good. The second step is getting these benchmarks
accepted as standard. This is particularly difficult for
a few reasons. For one, there is the catch-22 that peo-
ple want to use traditional benchmarks because that
is the best way to gain acceptance with a general au-
dience, but new benchmarks will not become accepted
unless people use them. A second obstacle to accep-
tance is that some scheduling techniques, particularly
operations research techniques, would not be able to
handle the new benchmarks, and this is a disincen-
tive to practitioners of these techiques to accept new
benchmarks. However, for the sake of advancing the
field, it is worth the effort to push for new benchmarks.

[An example of a sequence of benchmarks that cap-
tures the complexity of real-world scheduling are those
available on the web at [Fox and Ringer, 1995]. They
are based on data related to the scheduling of a project
for manufacturing an airplane and include issues such
as dynamic rescheduling. These benchmarks never
caught on, and are not included in standard collections
such as the OR Library [Beasley, 1990], partly because
most scheduling algorithms cannot handle them.]

Scheduling researchers should focus more on
metaheuristics such as evolutionary algorithms
and tabu search and less on small improvements
to older techniques. There are some distinct ad-
vantages that evolutionary algorithms and closely re-
lated techniques have over other approaches. First,
they are easy to apply to almost any scheduling prob-
lem, including those with odd constraints and criteria
that may derail other algorithms. Second, compared
to other general-purpose optimization techniques, in-
cluding standard operations research techniques, evo-
lutionary algorithms are fast at finding good (albeit
often suboptimal) solutions, particularly as the prob-
lem size increases. Third, evolutionary algorithms al-
low an explicit tradeoff between the search time and
the quality of the solution. Fourth, evolutionary algo-
rithms, with their population-based approach, allow
for easy and effective large-scale parallelization. Fifth,
evolutionary algorithms are well suited to the prob-
lems of fast schedule repair and dynamic rescheduling.

Scheduling researchers should focus more on is-

sues of reconfigurability. A reconfigurable sched-
uler is one that can be configured for a wide range of
different scheduling problems without modifying the
underlying software, with the problem-specific sched-
uling logic specified essentially as configuration data.
Reconfigurability addresses many of the issues dis-
cussed above. There is a greatly reduced cost of devel-
opment because there is no coding involved. Since the
code is reused, there is also a reduced cost of mainte-
nance and training. The scheduler can be configured
specifically to solve the user’s problem. Plus, dynamic
rescheduling and mixed-initiative scheduling come for
free if they are part of the basic functionality of the
reconfigurable scheduler.

Outside the evolutionary (and more generally the
metaheuristic) community, reconfigurability has been
considered important for a long time. The constraint
programming community has always considered highly
desirable the separation of the problem specification
and the solver. (ILOG has a sophisticated reconfig-
urable scheduling product based on OPL [Van Hen-
tenryck, 1999].) The mathematical programming com-
munity has AMPL [Fourer et al., 1993] and its asso-
ciated solvers that also provide this separation. How-
ever, these have both been limited: constraint pro-
gramming because of the lack of true optimization and
mathematical programming because of the inability to
handle algorithmic constraints in addition to algebraic
constraints. Our Vishnu reconfigurable scheduler is
the first to combine reconfigurability with evolution-
ary algorithms [Montana, 2001b].

[Further discussion of the benefits of reconfigurability
is contained in [Montana, 2001a].]

The scheduling research community should cre-
ate and adopt a set of standards for data for-
mats and interfaces and should accumulate a
library of open-source components that adhere
to these standards. A taste of the power that stan-
dardization brings can be seen with AMPL. Users can
specify the constraints and optimization criterion for
a problem in a high-level language and have a choice
of different solvers, with the option of picking the one
that works best for their particular problem. Develop-
ers can release their coded algorithms, knowing that
users can potentially employ them without the need
to learn about new representation formats or to re-
express their problem in these new formats.

In full scheduling systems, there are a variety of dif-
ferent components besides the automated scheduler.
Displays show Gantt charts and data as well as ac-
cepting user inputs. There are data interfaces that

read from and write to not just file formats but also
from applications such as Excel, Access, and Oracle.
Furthermore, there can be a centralized database con-
trolling access to the data and schedules. It is very
difficult for one researcher or one research institution
to develop a full scheduling system. However, if the
scheduling community were to define a standardized
architecture and standardized interfaces, researchers
could instead develop components, knowing that they
can easily be plugged into a larger system. Hence, re-
searchers would have a direct path to get their software
to users instead of just publishing articles and hop-
ing that somebody else implements their ideas. This
allows individual researchers to compete on an equal
footing with a company such as ILOG that has a full,
integrated product line and the resources to support it.
This component-based approach is particularly pow-
erful when combined with an open-source distribution
model (as discussed in [Montana, 2001a)). This allows
users to experiment freely with different components
and to tailor the components to their own ends.

[An early attempt at such standardization was the
Scheduling Applications Interface Language (SAIL) [
Hull, 1995], but it never caught on. As part of Vishnu,
we have recently developed an XML-based representa-
tion for scheduling problems and solutions that could
serve as the beginning of such a standardized represen-
tation [Montana, 2001b]. The DARPA Agent Markup
Language (DAML) [Hendler and McGuinness, 2000]
could be an even better language for a standard rep-
resentation than XML (of which it is an extension)
because of its ability to represent semantic content.]

The scheduling research community should cre-
ate and adopt standard protocols for commu-
nication and coordination between automated
schedulers. There are times when automated sched-
ulers need to communicate with each other, negotiat-
ing deals and coordinating schedules. For example, the
automated schedulers for a supplier and a consumer
might need to negotiate about what the supplier is
delivering and when, since it effects both schedules.
Another example is that two schedulers that share re-
sources might need to coordinate their use of these re-
sources. Humans are good at this negotiation, but ma-
chines traditionally are not. Defining standard proto-
cols for how automated schedulers communicate with
each other could lay the groundwork for automated
negotation of schedules. This is likely to be impor-
tant in the near future, as this is an enabling technol-
ogy for automated supply chains and many automated
business-to-business (B2B) transactions.

[For our work on multiagent scheduling [Montana et

al., 2000], we have used the Cougaar multiagent ar-
chitecture (available at www.cougaar.org) for commu-
nication between and coordination of the scheduling
agents. DAML provides an alternative for defining on-
tologies and protocols for interagent communication.]

References

[Beasley, 1990] J. Beasley. OR-Library: Distributing
test problems by electronic mail. Journal of the Op-
erational Research Society, 41(11):1069-1072, 1990.

[Fourer et al., 1993]
R. Fourer, D. Gay, and B. Kernighan. AMPL: A
Modeling Language for Mathematical Programming.
Duxbury Press, Belmont, CA, 1993.

[Fox and Ringer, 1995] B. Fox and M. Ringer. Plan-
ning and scheduling benchmarks, 1995.
http://www.neosoft.com/ benchmrx/.

[Hendler and McGuinness, 2000] J. Hendler and
D. McGuinness. The DARPA agent markup lan-
guage. IEEE Intelligent Systems, 15(6):67-73, 2000.

[Hull, 1995] L. Hull. SAIL reference manual, 1995.

[Montana et al., 2000] D. Montana, J. Herrero, G. Vi-
daver, and G. Bidwell. A multiagent society for mil-
itary transporation scheduling. Journal of Schedul-
ing, 3(4):225-246, 2000.

[Montana, 1998] D. Montana. Introduction to the spe-
cial issue: Evolutionary algorithms for scheduling.
Evolutionary Computation, 6(1):v—ix, 1998.

[Montana, 2001a] D. Montana. Optimized scheduling
for the masses. In Genetic and Evolutionary Com-
putation Conference Workshop Program, pages 132—
136, 2001.

[Montana, 2001b] D. Montana. A reconfigurable opti-
mizing scheduler. In Proceedings of the Genetic and

Evolutionary Computation Conference, pages 1159—
1166, 2001.

[Van Hentenryck, 1999] P. Van Hentenryck. The OPL
Optimization Programming Language. MIT Press,
Cambridge, MA, 1999.

