
A Comparison of Combinatorial Optimization and Dispatch Rules
for Online Scheduling

David Montana
BBN Technologies

10 Moulton Street, Cambridge, MA 02138
EMail: dmontana@bbn.com

Abstract

Online, or dynamic, scheduling refers to when the tasks
to perform are not known prior to the execution of
the schedule but rather are continually revealed during
the execution process. The real-time aspect of online
scheduling potentially changes the preferred properties
of the scheduling algorithm. In particular, the time re-
quired to generate a schedule becomes a more impor-
tant factor, while the quality of the schedules produced
becomes less important. The relative importance of
these two properties, schedule creation time and sched-
ule quality, differs greatly depending on the character-
istics of the scheduling problem. Here, we describe
an empirical investigation of how the tradeoff between
them varies with the scheduling problem. We do this
by comparing the performance of an optimizing sched-
uler, which creates better schedules, and a dispatch-rule
scheduler, which provides faster turnaround, on a set
of different online scheduling problems. Our experi-
ments identify some key factors in determining which
type of scheduler is better: (i) the predictability with
which schedules are executed and (ii) the time scale with
which the scheduling problem changes as compared to
the time required to optimize a schedule.

1 Introduction

For online scheduling, also referred to as dynamic
scheduling, schedule creation and schedule execution
are not separate processes, but rather are inextricably
intertwined. The tasks are not known before starting
the execution process but rather incrementally arrive in
the scheduler’s task “bin” during execution [6]. Hence,
schedules need to be dynamically created and updated in
real time.

Online scheduling places different requirements on
a scheduling algorithm. One such requirement is that
schedules should be created and updated quickly enough
to react to changes dynamically. The consequence is that

often a different type of algorithm is required for on-
line scheduling than “standard” static scheduling. For
example, to schedule processes in a computer operat-
ing system, it does not make sense to use combinato-
rial optimization, because any decision needs to be made
too quickly. Instead, a simple dispatch rule for when to
switch processes and which process to run next is better.

However, not all online scheduling problems are like
this. For example, field service scheduling (i.e., schedul-
ing repairpeople to service calls) is an online scheduling
problem, but an optimizing scheduler will work well for
this problem [9]. The reasons for the difference, as we
will discuss, are a larger time scale and schedule execu-
tion that is relatively predictable.

In this paper, we carry out a systematic experimental
exploration of the tradeoff in importance between sched-
ule creation time and schedule quality as the properties
of the online scheduling problem vary. To do this, we
define a sample online scheduling problem that is simple
enough that it can be easily understood and analyzed but
complex enough that scheduling performance can poten-
tially benefit from combinatorial optimization. We im-
plement the dynamic aspect of the problem as a simu-
lation in pseudo-real time. This allows explicit control
over the time for schedule creation relative to the actual
time of the process scheduled.

Parameters control various aspects of the online
scheduling problem, including a variety of statistical dis-
tributions, such as the arrival time of tasks, the time to
complete tasks, and the requirements on when to com-
plete tasks. Also determined by parameters are prece-
dence relationships, delays, transition times, and priori-
ties. Varying these parameters changes the nature of the
scheduling problem.

We use two different schedulers. One performs com-
binatorial optimization; since the problem is sufficiently
small, it finds the optimal schedule according to our
defined criterion. A second performs dispatch-rule
scheduling, optimizing the same criterion but only in a
greedy manner as resources become free. This allows

comparison between the two types of scheduling as we
vary the nature of the scheduling problem as well as the
schedule creation times.

The rest of the paper is structured as follows. Sec-
tion 2 discusses previous work on online scheduling and
related topics. Section 3 defines our sample scheduling
problem in detail. Section 4 describes the two different
scheduling algorithms used. Section 5 discusses experi-
ments and results.

2 Previous Work

While it is still prevalent to treat scheduling as a static
optimization problem, there has been a variety of work
on the dynamic aspects of scheduling. We now exam-
ine different threads of research on dynamic scheduling.
[Note that we only cite representative examples; more
comprehensive surveys of the field are available, such as
[15]. Further note that the vocabulary in the field is not
standardized, with researchers often using terms differ-
ently. We attempt to be as consistent as possible with
previous usage.]

One general approach, used by [4] and [14] among
others, divides the scheduling process into planning and
execution phases. During the planning phase, apredic-
tive schedulerperforms combinatorial optimization to
create a nominal schedule. During the execution phase,
a reactive schedulercontinually modifies or repairs the
nominal schedule to account for unanticipated circum-
stances. One goal of the reactive scheduler is to keep
the schedule as close as possible to the original nomi-
nal schedule. This approach makes sense when all the
scheduling data (including what tasks to schedule and
the state of the resources) is known for a certain period
of time into the future, and deviations that arise during
execution are likely to be minor.

A second approach to dynamic scheduling isdispatch
rules. In practice, the use of dispatch rules is very com-
mon, although the choice to use dispatch rules for real-
world scheduling often has more to do with ease of im-
plementation than scheduling performance. There is a
large variety of different rules that have been used, many
of them chronicled in summaries such as [11]. When
simple heuristic rules, such as earliest-due-date (EDD)
and first-in-first-out (FIFO), were applied to a range of
different scheduling problems, it was found that which
rule was best varied with the problem [10]. There is
also the potential for using a set of rules, rather than a
single rule, in an expert system [7]. The advantage of
using dispatch rules is that it enables quick reaction to
changes. The disadvantage is that it creates suboptimal
schedules because it does not plan into future. This ap-
proach for online scheduling is best when there is online

scheduling (i.e., tasks being revealed during execution),
the fundamental time scale of the problem (a concept we
will examine below) is short, and the future is very un-
certain.

A third approach to dynamic scheduling is continu-
ous combinatorial optimization. Periodically, a schedul-
ing algorithm essentially recomputes the entire sched-
ule to reflect the changed situation. A simple repair al-
gorithm changes the schedule minimally as required to
ensure that no hard constraints are violated due to un-
expected deviations from the schedule between sched-
uler updates. In practice, the results can be similar to
the predictive/reactive approach. This is particularly true
when the optimization criterion includes a term that re-
wards schedule stability, i.e. keeping the schedule as
similar to the previous schedules as possible, usually
for the sake of humans either being scheduled or as-
sisting with the schedules. (Examples of the use of a
schedule stability terms are given in [12] and [13].) The
fundamental distinction between this approach and the
predictive-reactive approach is that the latter has two dis-
tinct scheduling algorithms (one for planning and one for
execution) while the former uses a single scheduling al-
gorithm (with no distinction between planning and exe-
cution). A real-world example of this approach applied
to field service scheduling, i.e. scheduling of repairpeo-
ple, is described in [9]. This is a good approach when
there is online scheduling, the future is relatively pre-
dictable (at least in the near term), and the time scale is
long enough that an optimized schedule can be generated
within a time that the problem is not likely to change sig-
nificantly.

The fourth approach is stochastic optimization. Al-
gorithms of this variety perform a statistical analy-
sis of possible future scenarios (usually via a Monte
Carlo method) to compare expected payoffs of different
scheduling decisions. Examples of this approach are [5],
[2] and [3]. This approach works well when there is on-
line scheduling and the future is unpredictable in a deter-
ministic sense but is predictable in a statistical sense. Ex-
cept in those cases where strategies can be precomputed,
this approach (like combinatorial optimization) requires
that the fundamental time scale of the scheduling prob-
lem not be too small.

As we have pointed out, these different approaches
would be expected to perform well under different condi-
tions. Certain extreme situations are clearly suited to one
particular approach. (For example, the very short time
scale of operating system scheduling means that dispatch
rules are best suited.) However, often the situation is in
some middle ground, and it is not clear which approach
is best. In this paper we examine how to quantify the
tradeoffs to help decide on the best approach.

3 Test Problem Definition

In order to evaluate the performance of different online
scheduling algorithms, we need one or more test prob-
lems. We have invented a test problem with the follow-
ing desirable properties:
• It involves online scheduling.
• There is a clear potential advantage to planning into

future, but also a clear potential advantage to fast
schedule turnaround (hence establishing the funda-
mental tradeoff).

• Altering the parameters specifying the statistical
properties of the data changes the nature of the prob-
lem (essentially allowing the creation of different
scheduling problems) in a well controlled way.

We now describe the details of this test problem.

3.1 Jobs, Tasks and Resources

A task is an atomic unit of work to perform. Ajob is a
set of one or more interrelated tasks. Each task is part
of exactly one job. The tasks within a job form a simple
sequence, with the first task in the sequence needing to
finish before the second begins, and so on. There is po-
tentially a non-zero delay between tasks in a sequence,
where a task must wait a specified amount of time af-
ter its preceeding task completes before being allowed
to execute.

Jobs enter the system continually. Each job has asso-
ciated with it three times:
• arrival time: when the system/scheduler first has

knowledge of the job
• release time: the earliest that the job can start execut-

ing
• deadline: the time by which the job must complete or

else be considered late

Each job is a member of ajob class. All the jobs in a
particular job class share the following properties:
• (fixed) sequence of tasks with the associated delays
• (fixed) utility, which is the cost of not finishing the

job within the deadline (with the overall performance
metric being the sum over all dropped jobs of the job’s
utility)

All the jobs within a job class are generated proba-
bilistically from the following statistical distributions:
• jobs arrive following an exponential distribution,

specified by the mean time between arrivals
• each job’s holding duration (time between arrival and

release) is generated from a truncated normal distri-
bution, specified by the mean, standard deviation, and
minimum value

• each job’s execution duration (time between release
and deadline) is generated from a truncated normal

distribution

A resourcecan perform at most one task at a time.
Each resource can perform only tasks of a certaintask
type, where a task’s type is defined by its job’s class and
its position in the sequence of the job. The time required
to execute a task, which depends on the task type, is
generally non-deterministic. Between tasks of different
types, there are potentially non-zero resource transition
times, during which the resource is not available to ex-
ecute a task. Resources fail intermittently and are not
available to execute tasks until they are repaired.

Each resource is a member of aresource class. All the
resources in a resource class have the same properties,
which include:
• which task types are handled
• (fixed) transition times between tasks of different

types as a function of the two task types
• truncated normal distributions of task execution

times, with a different distribution per task type, each
determined by a mean and standard deviation with a
minimum value of 1

• exponential distributions of time between failures and
time for repairs, determined by the mean values

Unlike jobs, all resources are present at the start of the
simulation and persist throughout. Each resource class
specifies:
• the number of resources of that class

3.2 Pseudo-Real-Time Execution

In the previous subsection, we examined the static as-
pects of the scheduling problem, and now we discuss the
dynamic aspects. To perform online scheduling, we need
a dynamic process with a sense of time progressing. In
this case, we create a simulated dynamic process with
a simulation clock, which provides us with easy control
over time-related issues.

There are three basic processes occuring in the simu-
lation:
1. Events (associated with new job arrivals, resource

failures, and resource repairs) are arriving into the
system.

2. The scheduling algorithm is creating schedules by as-
signing tasks to resources at specified future times.

3. Tasks are being executed by resources as specified by
the current schedule.

Event Processing -The simulation maintains a list of
jobs with their arrival times invisible to the scheduling
and execution processes. When the simulation time ad-
vances to the arrival time of a job, the simulation injects
the job into the system by revealing it to the scheduling
and execution processes. Resource failure events and re-

source repair events are treated similarly. Note that the
simulation time is quantized so that every event must oc-
cur at a time that is an integral number of simulated sec-
onds into the run.

Scheduling - The scheduling algorithm is invoked to
create a new schedule under three possible conditions:
• a new event (job arrival, resource failure/repair) oc-

curs
• a specified number of seconds has passed since the

last invocation of the scheduler
• a reactive (dispatch-rule) scheduling algorithm is be-

ing usedand a resource becomes free
However, if the scheduler is already in the simulated pro-
cess of creating a schedule when cued to create a new
schedule, the new schedule creation process must wait
to begin until the previous schedule is completed.

The scheduling algorithm requires a potentially non-
zero amount of simulation time to make its decisions and
create a new schedule. The number of seconds required
for the scheduler to run is a parameter of the simula-
tion. (Note that the simulation time required to generate
a schedule has no relation to the actual time that the algo-
rithm runs.) During the simulated time that the scheduler
is creating a schedule, it ignores any changes to the un-
derlying data that occur. These changes include not only
new events but also deviations from expected task execu-
tion times. Furthermore, the schedule that was last cre-
ated stays in effect for the duration of the simulation time
required to create a new schedule. Note that this sched-
ule creation duration can cause degraded utilization of
the resources because: (i) there is a delay in reacting to
changes and (ii) newly created schedules are based on
outdated information.

Task Execution - One important aspect of task exe-
cution is the decision which task to execute with which
resource at what time. If everything goes according to
the schedule, then each resource executes each task as-
signed to it at the time when it is assigned. However, due
to the stochastic nature of the problem, generally sched-
ules do not proceed exactly as planned, and some form of
schedule repair is required. The execution process does
the simplest repair to ensure that the schedule does not
violate hard constraints (leaving any more sophisticated
adjustments to the schedule to the scheduling process).
Each resource maintains the same set of assigned tasks
in the same order that they are scheduled, but ignores
the absolute times of these assignments. The resource
executes the next task at the earliest time that does not
violate hard constraints (including task precedence rela-
tionships, earliest release time, and resource failures and
transition periods). Note that this means a task can be
executed earlier than it was scheduled (if the preceeding
task in its sequence or the preceeding task on its resource
finishes earlier than anticipated) as well as later than it

was scheduled.
A second aspect of task execution to consider is how

to handle resource transition periods, i.e. the time re-
quired for a resource to reconfigure to handle a task of
a different type than the previous one. We specify that a
resource should start the transition process at the earliest
possible time that it appears a transition will be needed
and the resource is idle. It should not wait until the next
task is ready to execute, because that will cause an un-
necessary delay in the tasks’s execution waiting for the
transition to occur. There will be times, namely when
the schedule changes which task to execute next, when
this policy can potentially cause extra delay, but overall
it leads to less time with resources idle.

A third aspect of task execution is what happens to
tasks and transition periods that are in the middle of ex-
ecuting when a resource fails. We specify that any such
interruption of a task or transition has the effect that
not only does the task or transition stops executing but
also that the state is as if the task or transition had never
started executing. Furthermore, such a task is taken off
the schedule until the scheduling process puts it back on
the schedule.

4 Scheduling Algorithms

The way we have defined our scheduling problem,
there will generally be clear distinctions between well-
performing and poorly-performing schedulers. The good
schedulers will align tasks so as to minimize the transi-
tion and idle times of the resources. They will also make
good decisions, when overwhelmed with tasks, about
which jobs to drop and will make those decisions early in
the jobs’ task sequence to avoid wasted execution time.
This will result in more jobs of higher utility finishing by
their deadline.

We have implemented two scheduling algorithms,
whose performance we will compare empirically. One
algorithm uses combinatorial optimization, while the
other employs a dispatch rule. We do not claim that
these particular algorithms are the best of their respec-
tives classes in terms of performance, but they are repre-
sentative. Hence, we can draw at least preliminary con-
clusions about the relative merits of the two classes of
scheduling algorithms.

We now describe each of these two algorithms.

4.1 Optimizing Scheduler

We have created the optimizing scheduler using Vishnu
[8, 1]. Vishnu is a scheduling application we developed
that is what we call areconfigurable scheduler, which
means that it can be configured for a wide variety of dif-

ferent scheduling problems without modifying the soft-
ware. For the purposes of this work, we configured it to
implement the hard constraints described above and the
optimization criterion given below. It will search for, and
generally find (given enough time), the optimal schedule
that satisfies the hard constraints. (The actual time re-
quired to perform the optimization does not affect the
simulation results, since simulation time is completely
separate from wall-clock time.)

The optimization criterion for the scheduler should
consider not just how a schedule as constituted satisfies
the criterion of completing jobs on time, but also what
happens beyond its time horizon and how future events
could disrupt the schedule. We define the optimization
criterion as ∑

j∈J

ρ(j) · Pf (j)

whereJ is the set of all outstanding jobs (i.e., jobs that
are neither completed nor overdue),ρ(j) is the utility
of job j, andPf (j) is the probability thatj does not
complete on time given the proposed schedule.

The value ofPf (j) must be estimated, even for jobs
whose deadlines are within the scheduling window, be-
cause of the stochastic nature of the task execution pro-
cess. (Note that the scheduling window is the finite in-
terval of time into the future into which the scheduler
can place tasks. For a job whose deadline lies within
this window, we know whether or not the job is sched-
uled to finish in time, but can only estimate whether it
will actually finish in time.) We do not use a formal ap-
proach since there is no analytic solution and a Monte
Carlo approach would take too long given all the jobs in
all the schedules we need to handle. Instead, we just use
a reasonable, quick estimate (in a similar fashion to how
chess-playing algorithms use a quick board evaluator to
evaluate one of many potential paths into the future).

The estimate ofPf (j) for job j is computed as fol-
lows. Let ts(j) denote the last task in the sequence of
tasks forj that is scheduled if such a task exists. (It will
not exist if no tasks ofj are currently scheduled.) Let
tn(j) be the first task in the sequence of tasks forj that
is not scheduled if such a task exists. (It will not exist
if all tasks of j are currently scheduled.) Eitherts(j)
or tn(j) must exist, and if they both exist then they are
consecutive. Ifts(j) exists, compute the quantity

Prob{Ereq(j) < rand(Esch(ts(j)) + Tfoll(ts(j)),
σfoll(ts(j)) + σexec(ts(j)))}

(1)

whereEreq(j) is the required end time (i.e., deadline)
for j, Esch(ts(j)) is the scheduled end time forts(j),
Tfoll(ts(j)) is the expected time to complete jobj after
finishing taskts(j), σfoll(j) is the standard deviation in

the time to completej after finishingts(j), σexec(j) is
the standard deviation in the task execution time ofts(j),
andrand(m,σ) is a random number selected from a nor-
mal distribution with meanm and deviationσ. If tn(j)
exists, compute the quantity

Prob{Ereq(j) < rand(Ewin + Tincl(tn(j)),
σincl(tn(j)))} (2)

whereEwin is the end time of the scheduling window,
Tincl(tn(j)) is the expected time to completetn(j) and
any subsequent tasks inj (with the caveat that once
the window is shifted forward in timetn(j) could ac-
tually be scheduled to start earlier than the previous
window end time without anything else changing), and
σincl(tn(j)) is the standard deviation in the time to com-
pletej including tn(j). Then,Pf (j) is given by Equa-
tion 1 if tn(j) does not exist, is given by Equation 2 if
ts(j) does not exist, and is the average of these two terms
otherwise.

One detail we passed over is how we estimate quanti-
ties such asTfoll(t). We posit

Tfoll(t) =
∑

tf∈Tf

(Tdelay(tf) + Texec(tf) + Tidle(tf))

whereTf is the set of all tasks followingt in sequence,
Tdelay(tf) is task precedence delay time,Texec(tf) is
estimated task execution time andTidle(tf) is the time
beyond the minimum thattf has to wait to obtain a re-
source. While we knowTdelay andTexec a priori, we just
make a guess (with constant set via experimentation) that
Tidle is approximately equal toTexec. So,

Tfoll(t) =
∑

tf∈Tf

(Tdelay(tf) + 2.0 · Texec(tf))

Similarly, we estimate

σfoll(t) =
∑

tf∈Tf

(1.4 · Texec(tf))

Tincl(t) = Tfoll(t) + 1.7 · Texec(t)

σincl(t) = 0.7 · Tincl(t)

4.2 Dispatch-Rule Scheduler

The dispatch-rule (reactive) scheduler does no look-
ahead in terms of planning schedules, instead waiting
for a resource to become free before choosing a single
task to assign this resource. The general approach for a
dispatch rule is to define a score associated with assign-
ing a given task to a given resource and select the eli-
gible task that minimizes (or maximizes) that score for

the chosen resource. For our dispatch rule, we have de-
fined a scoring function that uses the same basic idea as
the optimization criterion for our optimizing scheduler.
Not only does this work effectively, but it also reduces
the differences between the two schedulers beyond the
fundamental difference, the amount of look ahead.

For resourcer and taskt in job j, we define the score
for t as

ρ(j) · (Passign(t)− Pnot(t))

wherePassign(t) is the probability thatj fails to com-
plete on time ift is assigned tor andPnot(t) is the prob-
ability thatj fails to complete on time ift is not assigned
to r. This will usually be a negative number, with a more
negative value indicating a bigger difference made by
schedulingt now rather than waiting. Essentially, this
is doing triage, throwing away those jobs that are un-
likely to finish on time and postponing those jobs that
can safely be postponed. We estimatePassign(t) just as
in in Equation 1 withts(j) = t

Prob{Ereq(j) < rand(Esch(t) + Tfoll(t),
σfoll(t) + σexec(t))}

We estimatePnot(t) as

Prob{Ereq(j) < rand(Esch(t) + Tfoll(t) + Texec(t)−
Tidle(t), σfoll(t) + σexec(t))}

(3)

where in this caseTidle is the time between the current
time and the start of any transition fort. Underlying
Equation 3 is the assumption thatt would be scheduled
immediately after the conclusion of a similar type of task
that started immediately.

5 Experiments

5.1 Datasets

As discussed in Section 3, there are a variety of param-
eters that specify the nature of the data, much of it in a
statistical fashion. A listing of these different parameters
is given in Table 1. We have developed a data generator
that can create datasets with the properties specified by
the parameters. Generally, because of the probabilistic
nature of the data, each time the data generator is run
with a given set of parameters it will result in datasets
that are markedly different, albeit with the same statisti-
cal properties. To gain repeatability in running the simu-
lation, we have developed the capability for the data gen-
erator to save and then replay dataset instances. For ex-
perimentation, this repeatability is important because it
greatly reduces the “noise” in the experiments. With the
different scheduling algorithms all working on the exact

same data, differences in performance reflect more accu-
rately differences in the quality of the schedules gener-
ated.

We have created two different datasets, which we re-
fer to aspredictableandunpredictable. As shown in Ta-
ble 1, they are the same in many ways, but there are some
critical differences (highlighted in bold). One similarity
is that they both have two job classes, JC1 and JC2, with
jobs from JC1 consisting of a sequence of three tasks
and those from JC2 consisting of a single task. Both
datasets also have two resource classes, RC1 and RC2,
with resources from RC1 handling the first task of jobs
from JC1 as well as the tasks from JC2 and resources
from RC2 handling the last two tasks of jobs from JC1.
In both datasets, the resources from RC2 require two
seconds to transition between the two different types of
tasks they handle.

The key differences that make the unpredictable
dataset less predictable are
• higher resource failure rate: Resource failures repre-

sent a large unanticipated glitch in the schedule. The
tasks assigned to the failed resource can no longer run
as scheduled, affecting not only these tasks but other
tasks that depend on these via a “ripple effect”.

• greater variance of task execution times: The com-
pletion times of tasks will often be different from the
expected end time. Again, this has ripple effects for
other tasks on the same resource and other tasks in the
same job.

• shorter holding and execution durations: With less ad-
vance warning about upcoming tasks and a greater ur-
gency to start tasks as soon as possible, there is less
time to plan in advance. This makes it more likely that
new tasks will need to fit into the middle, rather than
at the end of, the existing schedule and disrupt it.

The other differences between the two datasets are an at-
tempt to keep the inherent level of difficulty of the two
datasets approximately the same. Most notably, the in-
crease from 2 instances of resource class RC2 (which is
the bottleneck) to 3 instances going from the predictable
dataset to the unpredictable dataset is a way to compen-
sate for the fact that the resources are available less and
are harder to allocate efficiently.

Both datasets are ten simulated hours long, providing
roughly 5000-6000 instances of each job class.

5.2 Results

To evaluate the performance of a given scheduling algo-
rithm on a given dataset, the key statistic we measure is
the fraction of jobs finished on time. We divide this into
separate measures for the two different classes of jobs,
JC1 and JC2, since each of these job classes provides
different challenges. JC1, with its three-task sequence

Table 1: Parameter Values for the Predictable and Unpredictable Datasets
Parameter Value 1 (Predictable) Value 2 (Unpredictable)

Resource Classes RC1, RC2 RC1, RC2
Number of Resources RC1: 3; RC2: 2 RC1: 3; RC2: 3
Task Types Handled RC1: TT1; RC2: TT2, TT3 RC1: TT1; RC2: TT2, TT3
Mean Task Execution Time RC1: 2; RC2: 4, 6 RC1: 2; RC2: 4, 6
Std. Dev. Task Execution RC1: 0; RC2: 0, 0 RC1: 1; RC2: 2, 3
Resource Transition Times TT2→TT3, TT3→TT2: 2 TT2→TT3, TT3→TT2: 2
Mean Time Between Fails RC1, RC2: 5 · 108 RC1, RC2: 150
Mean Time For Repair RC1, RC2: 5 RC1, RC2: 5
Job Classes JC1, JC2 JC1, JC2
Mean Time Bet. Arrivals JC1: 5.7; JC2: 8 JC1: 6.5; JC2: 4
Min Holding Time JC1: 15; JC2: 4 JC1: 0; JC2: 0
Mean Holding Time JC1: 3; JC2: 4 JC1: 0.5; JC2: 0.5
Min Time to Complete JC1: 35; JC2: 2 JC1: 25; JC2: 5
Mean Time to Complete JC1: 45; JC2: 4 JC1: 30; JC2: 6
Dev. Time to Complete JC1: 5; JC2: 1 JC1: 2; JC2: 1
Priorities JC1: 1; JC2: 2 JC1: 1; JC2: 2
Task Type Sequence JC1: TT1→TT2→TT3 JC1: TT1→TT2→TT3

JC2: TT1 JC2: TT1
Precedence Delay Times JC1: 0, 2, 1; JC2: 0 JC1: 0, 2, 1; JC2: 0

and longer holding and execution times, places more em-
phasis on planning. JC2, with just one task and quick
required turnaround, puts a bigger emphasis on reaction
time.

In addition to using different datasets and different
scheduling algorithms, a third aspect we can vary is the
schedule creation time. For the experiments, we only
used the dispatch-rule scheduler with schedule creation
time equal to zero. The reasoning here is that the benefit
of the dispatch-rule scheduler is its ability to make fast
decisions, so we assume that the time required for the
decision process is insignificant. In contrast, we used a
variety of different schedule creation times for the op-
timizing scheduler. This allowed us to explore a range
of possibilities for schedule creation time to understand
how it affects scheduling performance.

For all the runs with the optimizing scheduler, the
scheduling window was set to 30 seconds.

The results are shown in Table 2. The delay is the
schedule creation time.

A few observations about this data follow:
• When the scheduler delay (i.e., schedule creation

time) is zero, the optimizing scheduler outperforms
the dispatch-rule scheduler. This confirms our intu-
ition that, all other things being equal, the ability of
the optimizing scheduler to plan ahead gives it an ad-
vantage over a reactive scheduler.

• For zero delay, the difference between the optimiz-
ing and dispatch-rule schedulers is much greater for
the predictable data than the unpredictable data. This

confirms our intuition that planning ahead loses much
of its benefit when the future deviates significantly
from what has been planned.

• As the simulated delay for the optimizing scheduler
increases, the performance of this scheduler monton-
ically decreases. The dropoff in performance is much
faster for the unpredictable data (15% dropoff for a
3 second delay) than for the predictable data (15%
dropoff for a 10 second delay). This confirms our in-
tuition that scheduling delay is more harmful with less
predictable data.

• The decline in performance is also much steeper for
jobs of class JC2 than for jobs of class JC1. This
confirms our intuition that scheduling delay is more
harmful for jobs that require quick turnaround.

6 Conclusion

There are two basic causes of schedule disruption in on-
line scheduling. One is the schedule not executing ac-
cording to plan, e.g. due to unexpected task execution
times or resource failures. The other is the arrival of
new tasks with constraints dictating that they must be
placed in the middle, rather than at the end of, the sched-
ule. In response to schedule disruption, it is best to re-
act quickly because a delay in reaction results in a de-
crease in scheduling performance. This leads to an in-
herent tradeoff between planning carefully and reacting
quickly, since careful planning takes time that delays the
response.

Table 2: Percentage of jobs completed on time for the different scenarios
Predictable Unpredictable

Scheduler JC1 JC2 JC1 JC2
Dispatch-Rule (no delay) 85.8 99.3 89.7 99.6
Optimizing (no delay) 94.2 100.0 92.9 99.8
Optimizing (1 sec. delay) 93.6 99.9 90.3 99.0
Optimizing (2 sec. delay) 93.4 96.2 84.9 75.6
Optimizing (3 sec. delay) 93.1 85.2 78.0 45.5
Optimizing (5 sec. delay) 89.4 61.4 59.0 5.4
Optimizing (7 sec. delay) 85.2 33.6
Optimizing (10 sec. delay) 79.4 12.3
Optimizing (15 sec. delay) 73.5 2.3

We have investigated empirically this tradeoff be-
tween schedule quality and reaction time using a sim-
ulation of an online scheduling problem. To do this, we
have implemented two different schedulers for this prob-
lem, one using combinatorial optimization and the other
employing a dispatch rule. We have varied the simulated
reaction time (scheduling delay) for the optimizing algo-
rithm (while assuming that the dispatch rule reacts vir-
tually instantaneously). To test the algorithms under dif-
ferent conditions, we have created datasets with different
statistical properties. We have evaluated the scheduling
performance under different combinations of scheduling
algorithm, dataset, and reaction time. By doing so, we
have verified experimentally that indeed there does exist
a tradeoff between reaction time and schedule quality.
Furthermore, less predictable, more disruptive data tilts
the tradeoff further towards reaction time and enables
the dispatch rule to outperform the optimizing scheduler
with only a short scheduling delay.

There is much work that remains to be done in this
area. For one, the experimental results are just prelim-
inary. There are multiple dimensions of unpredictabil-
ity and disruptiveness, and exploring these dimensions
would require more variety than provided by the two
datasets we used. Secondly, it would be highly desir-
able to have a better theoretical understanding of how
the scheduling data affects the tradeoff between sched-
ule quality and reaction time. Ideally, there exists some
well-defined measure of unpredictability and how that
affects the choice of scheduling algorithm. As a purely
speculative example, consider the possibility of some de-
fined fundamental time constant that says how long on
average it takes before the scheduling problem changes
by a certain fraction, roughly equivalent to the concept
of half-life.

While there remains more to be done, we have taken
some significant first steps by empirically demonstrating
the dependence of the tradeoff between schedule quality
and reaction time on the scheduling data, and by provid-

ing an approach for an experimental investigation of this
tradeoff.

Acknowledgements

This work was funded by DARPA UltraLog contract
number MDA972-01-C-0025.

References

[1] BBN Technologies: 2004, ‘Vishnu Reconfigurable
Scheduler Home Page’. http://vishnu.bbn.com.

[2] Bent, R. and P. V. Hentenryck: 2004, ‘Regrets
Only. Online Stochastic Optimization under Time
Constraints’. Proc. 19th National Conference on
Artificial Intelligence (AAAI’04).

[3] Bertsekas, D. and D. C. non: 1999, ‘Rollout Algo-
rithms for Stochastic Scheduling Problems’.Jour-
nal of Heuristics5(1), 89–108.

[4] Burke, P. and P. Prosser: 1991, ‘A Distributed
Asynchronous System for Predictive and Reactive
Scheduling’. International Journal for Artificial
Intelligence in Engineering6(3), 106–124.

[5] Chang, H., R. Givan, and E. Chong: 2000, ‘On-
line Scheduling Via Sampling’.Proc. Fifth Interna-
tional Conference on Artificial Intelligence Plan-
ning and Scheduling. pp. 62–71.

[6] Dertouzos, M. and A. Mok: 1989, ‘Multi-
processor Online Scheduling of Hard-Real-Time
Tasks’. IEEE Transactions on Software Engineer-
ing 15(12), 1497–1506.

[7] Kunnathur, A., P. Sundararaghavan, and S. Sam-
path: 2004, ‘Dynamic rescheduling using a

simulation-based expert system’.Journal of Man-
ufacturing Technology Management15(2), 199–
212.

[8] Montana, D.: 2001, ‘A Reconfigurable Optimizing
Scheduler’.Proc. Genetic and Evolutionary Com-
putation Conference. pp. 1159–1166.

[9] Montana, D., M. Brinn, S. Moore, and G. Bid-
well: 1998, ‘Genetic Algorithms for Complex,
Real-Time Scheduling’.Proc. IEEE International
Conference on Systems, Man, and Cybernetics. pp.
2213–2218.

[10] Montazeri, M. and L. V. Wassenhove: 1990, ‘Anal-
ysis of Scheduling Rules for an FMS’.Interna-
tional Journal of Production Research28(4), 785–
802.

[11] Panwalker, S. and W. Iskander: 1977, ‘A Survey
of Scheduling Rules’.Operations Research25(1),
45–61.

[12] Rana-Stevens, S., B. Lubin, and D. Montana: 2000,
‘The Air Crew Scheduling System: The Design of
a Real-world, Dynamic Genetic Scheduler’. In:
Genetic and Evolutionary Computation Confer-
ence Late Breaking Papers. Morgan Kaufmann.

[13] Rangsaritratsamee, R., W. Ferrell, and M. Kurz:
2004, ‘Dynamic rescheduling that simultaneously
considers efficiency and stability’.Computers and
Industrial Engineering46(1), 1–15.

[14] Smith, S.: 1994, ‘OPIS: A Methodology and Ar-
chitecture for Reactive Scheduling’. In: Zweben
and Fox (eds.):Intelligent Scheduling. Morgan
Kaufmann, pp. 29–66.

[15] Vieira, G., J. Hermann, and E. Lin: 2003,
‘Rescheduling Manufacturing Systems: A Frame-
work of Strategies, Policies, and Methods’.Journal
of Scheduling6(1), 39–62.

