A Comparison of Combinatorial Optimization and Dispatch Rules
for Online Scheduling

David Montana
BBN Technologies
10 Moulton Street, Cambridge, MA 02138
EMail: dmontana@bbn.com

Abstract often a different type of algorithm is required for on-
line scheduling than “standard” static scheduling. For
Online, or dynamic, scheduling refers to when the tasksexample, to schedule processes in a computer operat-
to perform are not known prior to the execution of ing system, it does not make sense to use combinato-
the schedule but rather are continually revealed duringrial optimization, because any decision needs to be made
the execution process. The real-time aspect of onlinetoo quickly. Instead, a simple dispatch rule for when to
scheduling potentially changes the preferred propertieswitch processes and which process to run next is better.

of the scheduling algorithm. In particular, the time re- owever, not all online scheduling problems are like
quired to generate a schedule becomes a more imporpis. For example, field service scheduling (i.e., schedul-
tant factor, while the quality of the schedules produceding repairpeople to service calls) is an online scheduling
becomes less important. The relative importance ofproplem, but an optimizing scheduler will work well for
these two properties, schedule creation time and sched?hiS problem [9]. The reasons for the difference, as we
ule quality, differs greatly depending on the character-y; discuss, are a larger time scale and schedule execu-
istics of the scheduling problem. Here, we describejgn that is relatively predictable.

an empirical investigation of how the tradeoff between

. . . . In thi r, w rr matic experimental
them varies with the scheduling problem. We do this this paper, we carry out a systematic experimenta

by comparing the performance of an optimizin SChed_exploration of the tradeoff in importance between sched-
y paring P P 9 ule creation time and schedule quality as the properties

uler, which creates better schedules, and a dispatch—rul(g]c the online scheduling problem vary. To do this, we

sche_duler, Wh'.Ch prowdes_faster turnaround, on a Setdefine a sample online scheduling problem that is simple
of different online scheduling problems. Our experi-

X) enough that it can be easily understood and analyzed but
ments identify some key factors in determining which g y y

type of scheduler is better: (i) the predictability with complex enough that scheduling performance can poten-

: . : ., tially benefit from combinatorial optimization. We im-
which schedules are executed and (ii) the time scale with lement the dynamic aspect of the problem as a simu-

which the scheduling problem changes as compared t ation in pseudo-real time. This allows explicit control

the time required to optimize a schedule. over the time for schedule creation relative to the actual
time of the process scheduled.
1 Introduction Parameters control various aspects of the online
scheduling problem, including a variety of statistical dis-
For online scheduling, also referred to as dynamictributions, such as the arrival time of tasks, the time to
scheduling, schedule creation and schedule executiog§omplete tasks, and the requirements on when to com-
are not separate processes, but rather are inextricablplete tasks. Also determined by parameters are prece-
intertwined. The tasks are not known before startingdence relationships, delays, transition times, and priori-
the execution process but rather incrementally arrive inties. Varying these parameters changes the nature of the
the scheduler’s task “bin” during execution [6]. Hence, scheduling problem.
schedules need to be dynamically created and updated in We use two different schedulers. One performs com-
real time. binatorial optimization; since the problem is sufficiently
Online scheduling places different requirements onsmall, it finds the optimal schedule according to our
a scheduling algorithm. One such requirement is thatdefined criterion. A second performs dispatch-rule
schedules should be created and updated quickly enougbcheduling, optimizing the same criterion but only in a
to react to changes dynamically. The consequence is thagreedy manner as resources become free. This allows

comparison between the two types of scheduling as wescheduling (i.e., tasks being revealed during execution),

vary the nature of the scheduling problem as well as thethe fundamental time scale of the problem (a concept we

schedule creation times. will examine below) is short, and the future is very un-
The rest of the paper is structured as follows. Sec-certain.

tion 2 discusses previous work on online scheduling and A third approach to dynamic scheduling is continu-

relatt)led to_plgs. Sle(gmn.?, def:jnes qgr satl;nple S(ahf?du“n%us combinatorial optimization. Periodically, a schedul-
problem in detail. Section 4 describes the two di erent.ing algorithm essentially recomputes the entire sched-

scheduling algorithms used. Section 5 discusses eXPeriyia to reflect the changed situation. A simple repair al-

ments and results. gorithm changes the schedule minimally as required to
ensure that no hard constraints are violated due to un-
. expected deviations from the schedule between sched-
2 Previous Work uler updates. In practice, the results can be similar to
the predictive/reactive approach. This is particularly true
Wh||e |t iS St|” prevalent to treat SChedUIing as a StatiC When the Optimization Criterion inc|udes aterm that re-
optimization problem, there has been a variety of work wards schedule stability, i.e. keeping the schedule as
on the dynamic aspects of scheduling. We now exam-similar to the previous schedules as possible, usually
ine different threads of research on dynamic schedulingfgr the sake of humans either being scheduled or as-
[Note that we only cite representative examples; mores;sting with the schedules. (Examples of the use of a
comprehensive surveys of the field are available, such agchedule stability terms are given in [12] and [13].) The
[15]. Further note that the vocabulary in the field is not fyndamental distinction between this approach and the
standardized, with researchers often using terms differpredictive-reactive approach is that the latter has two dis-
ently. We attempt to be as consistent as possible withtinct scheduling algorithms (one for planning and one for
previous usage.] execution) while the former uses a single scheduling al-
One general approach, used by [4] and [14] amonggorithm (with no distinction between planning and exe-
others, divides the scheduling process into planning anctution). A real-world example of this approach applied
execution phases. During the planning phasereglic- to field service scheduling, i.e. scheduling of repairpeo-
tive schedulemperforms combinatorial optimization to ple, is described in [9]. This is a good approach when
create a nominal schedule. During the execution phaseshere is online scheduling, the future is relatively pre-
areactive schedulecontinually modifies or repairs the dictable (at least in the near term), and the time scale is
nominal schedule to account for unanticipated circum-|ong enough that an optimized schedule can be generated

stances. One goal of the reactive scheduler is to keepyithin a time that the problem is not likely to change sig-
the schedule as close as possible to the original nominjficantly.

nal schedule. This approach makes sense when all the _ . Lo
scheduling data (including what tasks to schedule and The fourth approagh is stochastic optimization. Al-
the state of the resources) is known for a certain periodg,c’rlthms of this variety perform a statistical analy-

of time into the future, and deviations that arise during 23 |0f poshsﬂale future scenarios (L(ljsuallyﬁwafa:j_fl\:lonte
execution are likely to be minor. arlo method) to compare expected payoffs of different

A second approach to dynamic schedulingiipatch scheduling de(_:isions. Examples of this approach are [5],
rules In practice, the use of dispatch rules is very com- [.2] and [3]. Th's approach wor_ks well w_hen thgre IS on-
mon, although the choice to use dispatch rules for real_I|ne scheduling and the future is unpredictable in a deter-
Worlé scheduling often has more to do with ease of im- ministic sense but is predictable in a statistical sense. Ex-

plementation than scheduling performance. There is cept in those cases where strategies can be precomputed,

large variety of different rules that have been used, man;;/‘t his approach (like combinatorial optimization) requires

of them chronicled in summaries such as [11]. Whenthat the fundamental time scale of the scheduling prob-

simple heuristic rules, such as earliest-due-date (EDD)Iem not be too small.

and first-in-first-out (FIFO), were applied to a range of As we have pointed out, these different approaches
different scheduling problems, it was found that which would be expected to perform well under different condi-
rule was best varied with the problem [10]. There is tions. Certain extreme situations are clearly suited to one
also the potential for using a set of rules, rather than aparticular approach. (For example, the very short time
single rule, in an expert system [7]. The advantage ofscale of operating system scheduling means that dispatch
using dispatch rules is that it enables quick reaction torules are best suited.) However, often the situation is in
changes. The disadvantage is that it creates suboptimalome middle ground, and it is not clear which approach
schedules because it does not plan into future. This apis best. In this paper we examine how to quantify the
proach for online scheduling is best when there is onlinetradeoffs to help decide on the best approach.

3 Test Problem Definition distribution

. . A resourcecan perform at most one task at a time.
In order to evaluate the performance of different online .
Each resource can perform only tasks of a certagk

scheduling algorithms, we need one or more test prob-) . . o
lems. We have invented a test problem with the follow- type where a task’s type is defined by its job's class and

ing desirable properties: its position in the sequence of the job. The time required
« Itinvolves online scheduling. to execute a task, which depends on the task type, is

e There is a clear potential advantage to planning intogenerally non-deterministic. Between tasks of different

future, but also a clear potential advantage to tastlyPes, there are potentially non-zero resource transition

schedule turnaround (hence establishing the funda_tlmes, during which the resource is not available to ex-

mental tradeoff) ecute a task. Resources fail intermittently and are not

e Altering the parameters specifying the statistical available to execgte tasks until they are repaired.
properties of the data changes the nature of the prob- Each resource is a member aksource classAll the
lem (essentially allowing the creation of different "€SOUrCes in a resource class have the same properties,
scheduling problems) in a well controlled way. which include:

We now describe the details of this test problem. ¢ W_hiCh task ty_p_es are handied .
o (fixed) transition times between tasks of different

types as a function of the two task types
3.1 Jobs, Tasks and Resources e truncated normal distributions of task execution
times, with a different distribution per task type, each

A taskis an atomic unit of work to perform. fobis a determined by a mean and standard deviation with a

set of one or more interrelated tasks. Each task is part minimum value of 1

of exactly one job. The tasks within a job form a simple , eyponential distributions of time between failures and
sequence, with the first task in the sequence needing t0 {jme for repairs, determined by the mean values
finish before the second begins, and so on. There is po-

tentia”y a non-zero de|ay between tasks in a seqguence, Unlike jObS, all resources are present at the start of the

Where a task must Wa|t a Specified amount of t|me af_SimUIation and perSiSt throughout. EaCh resource C|aSS

ter its preceeding task completes before being allowedSPecifies:

to execute. e the number of resources of that class
Jobs enter the system continually. Each job has asso-

ciated with it three times:

e arrival time: when the system/scheduler first has
knowledge of the job

e release time: the earliest that the job can start execut
ing

e deadline: the time by which the job must complete or
else be considered late

3.2 Pseudo-Real-Time Execution

In the previous subsection, we examined the static as-
pects of the scheduling problem, and now we discuss the
dynamic aspects. To perform online scheduling, we need
a dynamic process with a sense of time progressing. In
this case, we create a simulated dynamic process with
Each job is a member ofjab class All the jobsina a simulation clock, which provides us with easy control
particular job class share the following properties: over time-related issues.
¢ (fixed) sequence of tasks with the associated delays There are three basic processes occuring in the simu-
e (fixed) utility, which is the cost of not finishing the lation:
job within the deadline (with the overall performance 1. Events (associated with new job arrivals, resource
metric being the sum over all dropped jobs of the job’s failures, and resource repairs) are arriving into the
utility) system.
2. The scheduling algorithm is creating schedules by as-
signing tasks to resources at specified future times.
3. Tasks are being executed by resources as specified by
the current schedule.

All the jobs within a job class are generated proba-

bilistically from the following statistical distributions:

e jobs arrive following an exponential distribution,
specified by the mean time between arrivals

e each job’s holding duration (time between arrival and Event Processing -The simulation maintains a list of
release) is generated from a truncated normal distri-jobs with their arrival times invisible to the scheduling
bution, specified by the mean, standard deviation, andand execution processes. When the simulation time ad-
minimum value vances to the arrival time of a job, the simulation injects

e each job’s execution duration (time between releasethe job into the system by revealing it to the scheduling
and deadline) is generated from a truncated normaland execution processes. Resource failure events and re-

source repair events are treated similarly. Note that thewas scheduled.
simulation time is quantized so that every event must oc- A second aspect of task execution to consider is how
cur at a time that is an integral number of simulated sec-to handle resource transition periods, i.e. the time re-
onds into the run. quired for a resource to reconfigure to handle a task of
Scheduling - The scheduling algorithm is invoked to a different type than the previous one. We specify that a
create a new schedule under three possible conditions: resource should start the transition process at the earliest
e a new event (job arrival, resource failure/repair) oc- possible time that it appears a transition will be needed
curs and the resource is idle. It should not wait until the next
¢ a specified number of seconds has passed since thi@sk is ready to execute, because that will cause an un-
last invocation of the scheduler necessary delay in the tasks’s execution waiting for the
¢ areactive (dispatch-rule) scheduling algorithm is be- transition to occur. There will be times, namely when
ing usedand a resource becomes free the schedule changes which task to execute next, when
However, if the scheduler is already in the simulated pro-this policy can potentially cause extra delay, but overall
cess of creating a schedule when cued to create a new leads to less time with resources idle.
schedule, the new schedule creation process must wait A third aspect of task execution is what happens to
to begin until the previous schedule is completed. tasks and transition periods that are in the middle of ex-
The scheduling algorithm requires a potentially non- €cuting when a resource fails. We specify that any such
zero amount of simulation time to make its decisions andinterruption of a task or transition has the effect that
create a new schedule. The number of seconds requirefiot only does the task or transition stops executing but
for the scheduler to run is a parameter of the simula-also that the state is as if the task or transition had never
tion. (Note that the simulation time required to generateStarted executing. Furthermore, such a task is taken off
a schedule has no relation to the actual time that the algothe schedule until the scheduling process puts it back on
rithm runs.) During the simulated time that the schedulerthe schedule.
is creating a schedule, it ignores any changes to the un-
derlying data that occur. These changes include not only)]
new events but also deviations from expected task execué Scheduling Algorithms
tion times. Furthermore, the schedule that was last cre-
ated stays in effect for the duration of the simulation time The way we have defined our scheduling problem,
required to create a new schedule. Note that this schedthere will generally be clear distinctions between well-
ule creation duration can cause degraded utilization ofPerforming and poorly-performing schedulers. The good
the resources because: (|) there is a de|ay in reacting t@ChedUlerS will align tasks so as to minimize the transi-
changes and (i) newly created schedules are based ofion and idle times of the resources. They will also make
outdated information. good decisions, when overwhelmed with tasks, about
Task Execution - One important aspect of task exe- whi(;h jobs to drop and will mak(_e those decisions_early in
cution is the decision which task to execute with which the jobs’ task sequence to avoid wasted execution time.
resource at what time. If everything goes according toTh'_S will regult in more jobs of higher utility finishing by
the schedule, then each resource executes each task d8€ir deadline. _ _
signed to it at the time when it is assigned. However, due We have implemented two scheduling algorithms,
to the stochastic nature of the problem, generally schedhose performance we will compare empirically. One
ules do not proceed exactly as planned, and some form oflgorithm uses combinatorial optimization, while the
schedule repair is required. The execution process doe§ther eémploys a dispatch rule. We do not claim that
the simplest repair to ensure that the schedule does ndf’€se particular algorithms are the best of their respec-
violate hard constraints (leaving any more sophisticatediVes classes in terms of performance, but they are repre-
adjustments to the schedule to the scheduling processféntative. Hence, we can draw at least preliminary con-
Each resource maintains the same set of assigned tasi&Usions about the relative merits of the two classes of
in the same order that they are scheduled, but ignore§cheduling algorithms.
the absolute times of these assignments. The resource e now describe each of these two algorithms.
executes the next task at the earliest time that does not
\{iolatg hard cqnstraints (ingluding task precede_nce rela—4_1 Optimizing Scheduler
tionships, earliest release time, and resource failures and
transition periods). Note that this means a task can baVe have created the optimizing scheduler using Vishnu
executed earlier than it was scheduled (if the preceedindg8, 1]. Vishnu is a scheduling application we developed
task in its sequence or the preceeding task on its resourcthat is what we call aeconfigurable schedulemhich
finishes earlier than anticipated) as well as later than itmeans that it can be configured for a wide variety of dif-

ferent scheduling problems without modifying the soft- the time to complete after finishingts(j), oezec(j) is
ware. For the purposes of this work, we configured it to the standard deviation in the task execution time, 6f),
implement the hard constraints described above and th@andrand(m, o) is arandom number selected from a nor-
optimization criterion given below. It will search for,and mal distribution with meamn and deviatior. If ¢,,(j)
generally find (given enough time), the optimal schedule exists, compute the quantity

that satisfies the hard constraints. (The actual time re-

quired to perform the optimization does not affect the Prob{E;eq(j) < rand(Eyin + Tinci(tn(5)),
simulation results, since simulation time is completely Tinet(tn (1))} 2)
separate from wall-clock time.)

The optimization criterion for the scheduler should where E,,;,, is the end time of the scheduling window,
consider not just how a schedule as constituted satisfied;,,.;(¢.(j)) is the expected time to completg(;) and
the criterion of completing jobs on time, but also what any subsequent tasks jn (with the caveat that once
happens beyond its time horizon and how future eventsghe window is shifted forward in time, (j) could ac-
could disrupt the schedule. We define the optimizationtually be scheduled to start earlier than the previous

criterion as window end time without anything else changing), and
Z p(3) - Pr(j) oincl(tn(j)) is the standard deviation in the time to com-
= pletej includingt,(j). Then,P(j) is given by Equa-

tion 1 if ¢,,(j) does not exist, is given by Equation 2 if
ts(j) does not exist, and is the average of these two terms
otherwise.

One detail we passed over is how we estimate quanti-
ties such ad,;;(t). We posit

where J is the set of all outstanding jobs (i.e., jobs that
are neither completed nor overdug),j) is the utility

of job j, and P;(j) is the probability thatj does not
complete on time given the proposed schedule.

The value ofP;(j) must be estimated, even for jobs
whose deadlines are within the scheduling window, be-
cause of the stochastic nature of the task execution pro-Tfoll(t) = Z (Taetay(t7) + Tewee(ty) + Tidie(t)
cess. (Note that the scheduling window is the finite in- tr€Ty
terval of time into the future into which the scheduler
can place tasks. For a job whose deadline lies within
this window, we know whether or not the job is sched-
uled to finish in time, but can only estimate whether it
will actually finish in time.) We do not use a formal ap-
proach since there is no analytic solgﬂon and a Mon.temake a guess (with constant set via experimentation) that
Carlo approach would take too long given all the jobs in T is approximatelv equal i@ So
all the schedules we need to handle. Instead, we just usg'® 'S 2PP Y eda cect %
a reasonable, quick estimate (in a similar fashion to how
chess-playing algorithms use a quick board evaluator to Trou(t) = > (Tuetay(ts) + 20 Teaeelts)
evaluate one of many potential paths into the future). tr€Ty

The estimate of; () for job j is computed as fol- gjmijarly, we estimate
lows. Letts(j) denote the last task in the sequence of
tasks forj that is scheduled if such a task exists. (It will o pou(t) = Z (1.4 Topee(ts))
not exist if no tasks of are currently scheduled.) Let ‘

whereT’ is the set of all tasks following in sequence,
Taetay(ty) is task precedence delay timé, ..(ts) is
estimated task execution time afffl;.(t) is the time
beyond the minimum that; has to wait to obtain a re-
source. While we KnoW y¢;4, andT . a priori, we just

ty€T
t.(j) be the first task in the sequence of tasks;ftinat =

?s not scheduled if such a task exists. (It Wi'|| not exist Tinet(t) = Tron(t) + 1.7 - Togee(t)
if all tasks of j are currently scheduled.) Either(j)

or t,(j) must exist, and if they both exist then they are Tinc(t) = 0.7 Tine(t)

consecutive. It,(j) exists, compute the quantity

Prob{Eyeq(j) < 1and(Esen(ts(7)) + Trou(ts (), 4.2 Dispatch-Rule Scheduler

T ot (ts(4)) + Temec(ts(5)))} The dispatch-rule (reactive) scheduler does no look-
(1) ahead in terms of planning schedules, instead waiting
for a resource to become free before choosing a single
where E,..,(j) is the required end time (i.e., deadline) task to assign this resource. The general approach for a
for j, Esen(ts(4)) is the scheduled end time fog(j), dispatch rule is to define a score associated with assign-
Trou(ts(7)) is the expected time to complete jgtafter ing a given task to a given resource and select the eli-
finishing taskts(j), o701 (j) is the standard deviation in gible task that minimizes (or maximizes) that score for

the chosen resource. For our dispatch rule, we have desame data, differences in performance reflect more accu-
fined a scoring function that uses the same basic idea amately differences in the quality of the schedules gener-
the optimization criterion for our optimizing scheduler. ated.

Not only does this work effectively, but it also reduces We have created two different datasets, which we re-
the differences between the two schedulers beyond théer to aspredictableandunpredictable As shown in Ta-

fundamental difference, the amount of look ahead. ble 1, they are the same in many ways, but there are some
For resource and task in job j, we define the score critical differences (highlighted in bold). One similarity
for t as is that they both have two job classes, JC1 and JC2, with
P(7) - (Passign(t) — Prot(t)) jobs from JC1 consisting of a sequence of three tasks

and those from JC2 consisting of a single task. Both
datasets also have two resource classes, RC1 and RC2,
with resources from RC1 handling the first task of jobs
from JC1 as well as the tasks from JC2 and resources
from RC2 handling the last two tasks of jobs from JC1.
In both datasets, the resources from RC2 require two
seconds to transition between the two different types of
tasks they handle.
The key differences that make the unpredictable
dataset less predictable are
e higher resource failure rate: Resource failures repre-
Prob{E,cq(j) < rand(Escn(t) + Troul(t), sent a large unanticipated glitch in the schedule. The
0 fott(t) + Teec(t))} tasks assigned to the failed resource can no longer run
’ as scheduled, affecting not only these tasks but other

where Pqsign (t) is the probability thay fails to com-
plete on time ift is assigned te and P,,+(t) is the prob-
ability that fails to complete on time if is not assigned
tor. This will usually be a negative number, with a more
negative value indicating a bigger difference made by
schedulingt now rather than waiting. Essentially, this
is doing triage, throwing away those jobs that are un-
likely to finish on time and postponing those jobs that
can safely be postponed. We estim&g; . (t) just as

in in Equation 1 withts(5) = ¢

We estimateP,,.; () as tasks that depend on these via a “ripple effect”.
e greater variance of task execution times: The com-
Prob{E,.,(j) < rand(Escn(t) + Trou(t) + Tewec(t)— pletion times of tasks will often be different from the
Tiare(t), 0 pou(t) + Temec(t))} expected end time. Again, this has ripple effects for
©) other tasks on the same resource and other tasks in the
same job.
where in this cas&}q. is the time between the current e shorter holding and execution durations: With less ad-
time and the start of any transition for Underlying vance warning about upcoming tasks and a greater ur-
Equation 3 is the assumption thatvould be scheduled gency to start tasks as soon as possible, there is less
immediately after the conclusion of a similar type of task time to plan in advance. This makes it more likely that
that started immediately. new tasks will need to fit into the middle, rather than

at the end of, the existing schedule and disrupt it.
The other differences between the two datasets are an at-
tempt to keep the inherent level of difficulty of the two
datasets approximately the same. Most notably, the in-
5.1 Datasets crease from 2 instances of resource class RC2 (which is

As discussed in Section 3, there are a variety of paramin€ bottleneck) to 3 instances going from the predictable
eters that specify the nature of the data, much of it in adataset to the unpredictable dataset is a way to compen-
statistical fashion. A listing of these different parameters Sate for the fact that the resources are available less and
is given in Table 1. We have developed a data generatof'® harder to allocate efficiently.

that can create datasets with the properties specified by Both datasets are ten simulated hours long, providing
the parameters. Generally, because of the probabilisti¢oughly 5000-6000 instances of each job class.

nature of the data, each time the data generator is run

with a given set of _parameters ?t Wi|| result in datas_et_s 52 Results

that are markedly different, albeit with the same statisti-

cal properties. To gain repeatability in running the simu- To evaluate the performance of a given scheduling algo-
lation, we have developed the capability for the data gen-ithm on a given dataset, the key statistic we measure is
erator to save and then replay dataset instances. For exhe fraction of jobs finished on time. We divide this into
perimentation, this repeatability is important because itseparate measures for the two different classes of jobs,
greatly reduces the “noise” in the experiments. With the JC1 and JC2, since each of these job classes provides
different scheduling algorithms all working on the exact different challenges. JC1, with its three-task sequence

5 Experiments

Table 1: Parameter Values for the Predictable and Unpredictable Datasets

Value 1 (Predictable)

Value 2 (Unpredictable)

Parameter
Resource Classes RC1, RC2
Number of Resources RC1: 3; RC2: 2

Task Types Handled

Mean Task Execution Time
Std. Dev. Task Execution
Resource Transition Times

RC1, RC2
RC1: 3; RC2: 3

RC1: TT1; RC2: TT2,TT3 RC1:TT1,RC2: TT2,TT3

RC1: 2; RC2: 4,6
RC1:0; RC2: 0,0

TR2TT3, TT3—-TT2: 2

RC1: 2; RC2: 4,6
RC1:1;RC2: 2,3
TT2—-TT3, TT3—TT2: 2

Mean Time Between Fails RC1, RC2:5 - 108 RC1, RC2: 150
Mean Time For Repair RC1,RC2: 5 RC1,RC2: 5
Job Classes JC1,JC2 JC1,JC2
Mean Time Bet. Arrivals ~ JC1: 5.7;JC2: 8 JC1:6.5;JC2: 4
Min Holding Time JC1: 15;JC2: 4 JC1:0;JC2: 0
Mean Holding Time JC1: 3;JC2: 4 JC1: 0.5;JC2: 0.5
Min Time to Complete JC1: 35;JC2: 2 JC1: 25;JC2: 5
Mean Time to Complete JC1: 45;JC2: 4 JC1: 30;JC2: 6
Dev. Time to Complete JC1:5;JC2:1 JC1:2;JC2:1
Priorities JC1:1;JC2: 2 JC1:1;JC2: 2
Task Type Sequence JC1: THITT2—TT3 JC1: TT1:-TT2—TT3
JC2: TT1 JC2: TT1

Precedence Delay Times

JC1:0,2,1;JC2: 0

JC1:0,2,1;JC2: 0

and longer holding and execution times, places more em-
phasis on planning. JC2, with just one task and quick

required turnaround, puts a bigger emphasis on reaction
time. °

In addition to using different datasets and different
scheduling algorithms, a third aspect we can vary is the
schedule creation time. For the experiments, we only
used the dispatch-rule scheduler with schedule creation
time equal to zero. The reasoning here is that the benefit
of the dispatch-rule scheduler is its ability to make fast
decisions, so we assume that the time required for the
decision process is insignificant. In contrast, we used a®
variety of different schedule creation times for the op-
timizing scheduler. This allowed us to explore a range
of possibilities for schedule creation time to understand
how it affects scheduling performance.

confirms our intuition that planning ahead loses much
of its benefit when the future deviates significantly
from what has been planned.

As the simulated delay for the optimizing scheduler
increases, the performance of this scheduler monton-
ically decreases. The dropoff in performance is much
faster for the unpredictable data (15% dropoff for a
3 second delay) than for the predictable data (15%
dropoff for a 10 second delay). This confirms our in-
tuition that scheduling delay is more harmful with less
predictable data.

The decline in performance is also much steeper for
jobs of class JC2 than for jobs of class JC1. This
confirms our intuition that scheduling delay is more
harmful for jobs that require quick turnaround.

For all the runs with the optimizing scheduler, the 6 Conclusion

scheduling window was set to 30 seconds.

The results are shown in Table 2. The delay is the There are two basic causes of schedule disruption in on-

schedule creation time.
A few observations about this data follow:

line scheduling. One is the schedule not executing ac-
cording to plan, e.g. due to unexpected task execution

e When the scheduler delay (i.e., schedule creationtimes or resource failures. The other is the arrival of
time) is zero, the optimizing scheduler outperforms new tasks with constraints dictating that they must be
the dispatch-rule scheduler. This confirms our intu- placed in the middle, rather than at the end of, the sched-
ition that, all other things being equal, the ability of ule. In response to schedule disruption, it is best to re-
the optimizing scheduler to plan ahead gives it an ad-act quickly because a delay in reaction results in a de-

vantage over a reactive scheduler.

crease in scheduling performance. This leads to an in-

e For zero delay, the difference between the optimiz- herent tradeoff between planning carefully and reacting
ing and dispatch-rule schedulers is much greater forquickly, since careful planning takes time that delays the
the predictable data than the unpredictable data. Thigesponse.

Table 2: Percentage of jobs completed on time for the different scenarios
Predictable Unpredictable

Scheduler JC1 JC2 JC1 JC2
Dispatch-Rule (nodelay) 85.8 99.3 89.7 99.6
Optimizing (no delay) 94.2 100.0 929 99.8

Optimizing (1 sec. delay) 93.6 999 90.3 99.0
Optimizing (2 sec. delay) 934 96.2 84.9 75.6
Optimizing (3sec.delay) 93.1 85.2 78.0 455
Optimizing (5 sec. delay) 89.4 614 59.0 5.4
Optimizing (7 sec. delay) 85.2 33.6

Optimizing (10 sec. delay) 79.4 12.3

Optimizing (15 sec. delay) 73.5 2.3

We have investigated empirically this tradeoff be- ing an approach for an experimental investigation of this
tween schedule quality and reaction time using a sim-tradeoff.
ulation of an online scheduling problem. To do this, we
have implemented two different schedulers for this prob-
lem, one using combinatorial optimization and the otherAcknowIedgements
employing a dispatch rule. We have varied the simulated
reaction time (scheduling delay) for the optimizing algo- This work was funded by DARPA UltraLog contract
rithm (while assuming that the dispatch rule reacts vir- number MDA972-01-C-0025.
tually instantaneously). To test the algorithms under dif-
ferent conditions, we have created datasets with different
statistical properties. We have evaluated the schedulingReferences
performance under different combinations of scheduling
algorithm, dataset, and reaction time. By doing so, we [1] BBN Technologies: 2004, ‘Vishnu Reconfigurable
have verified experimentally that indeed there does exist Scheduler Home Page’. http://vishnu.bbn.com.
a tradeoff between reaction time and schedule quality.
Furthermore, less predictable, more disruptive data tilts [2] Bent, R. and P. V. Hentenryck: 2004, ‘Regrets
the tradeoff further towards reaction time and enables ~ Only. Online Stochastic Optimization under Time

the dispatch rule to outperform the optimizing scheduler Constraints’. Proc. 19th National Conference on
with only a short scheduling delay. Artificial Intelligence (AAAI'04)

There is much work that remains to be done in this [3] Bertsekas, D. and D. C. non: 1999, ‘Rollout Algo-
area. For one, the experimental results are just prelim- rithms for Stochastic Scheduling Problemaaur-
inary. There are multiple dimensions of unpredictabil- nal of Heuristics5(1), 89-108.

ity and disruptiveness, and exploring these dimensions
would require more variety than provided by the two [4] Burke, P. and P. Prosser: 1991, ‘A Distributed

datasets we used. Secondly, it would be highly desir- Asynchronous System for Predictive and Reactive
able to have a better theoretical understanding of how Scheduling’. International Journal for Artificial
the scheduling data affects the tradeoff between sched- Intelligence in Engineering(3), 106—124.

ule quality and reaction time. Ideally, there exists some

well-defined measure of unpredictability and how that [5] Chang, H., R. Givan, and E. Chong: 2000, ‘On-
affects the choice of scheduling algorithm. As a purely line Scheduling Via SamplingProc. Fifth Interna-
speculative example, consider the possibility of some de- tional Conference on Atrtificial Intelligence Plan-
fined fundamental time constant that says how long on ~ Nning and Schedulingp. 62-71.

average it takes before the scheduling problem changes

by a certain fraction, roughly equivalent to the concept 0] Dertouzos, M. and A. Mok: 1989, ‘Multi-
of half-life. processor Online Scheduling of Hard-Real-Time

Tasks'’. IEEE Transactions on Software Engineer-
While there remains more to be done, we have taken ing 15(12), 1497-1506.

some significant first steps by empirically demonstrating
the dependence of the tradeoff between schedule quality[7] Kunnathur, A., P. Sundararaghavan, and S. Sam-
and reaction time on the scheduling data, and by provid- path: 2004, ‘Dynamic rescheduling using a

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

simulation-based expert systendournal of Man-
ufacturing Technology Managemeh§(2), 199—
212.

Montana, D.: 2001, ‘A Reconfigurable Optimizing
Scheduler’.Proc. Genetic and Evolutionary Com-
putation Conferencepp. 1159-1166.

Montana, D., M. Brinn, S. Moore, and G. Bid-
well: 1998, ‘Genetic Algorithms for Complex,
Real-Time Scheduling’Proc. IEEE International
Conference on Systems, Man, and Cybernepigs
2213-2218.

Montazeri, M. and L. V. Wassenhove: 1990, ‘Anal-
ysis of Scheduling Rules for an FMS’Interna-
tional Journal of Production Resear@8(4), 785—
802.

Panwalker, S. and W. Iskander: 1977, ‘A Survey
of Scheduling Rules’Operations Researcky(1),
45-61.

Rana-Stevens, S., B. Lubin, and D. Montana: 2000,
‘The Air Crew Scheduling System: The Design of
a Real-world, Dynamic Genetic Scheduler’. In:
Genetic and Evolutionary Computation Confer-
ence Late Breaking PaperMorgan Kaufmann.

Rangsaritratsamee, R., W. Ferrell, and M. Kurz:
2004, ‘Dynamic rescheduling that simultaneously
considers efficiency and stabilityComputers and
Industrial Engineeringt6(1), 1-15.

Smith, S.: 1994, ‘OPIS: A Methodology and Ar-
chitecture for Reactive Scheduling’. In: Zweben
and Fox (eds.):Intelligent Scheduling Morgan
Kaufmann, pp. 29-66.

Vieira, G., J. Hermann, and E. Lin: 2003,
‘Rescheduling Manufacturing Systems: A Frame-
work of Strategies, Policies, and Method®urnal

of Scheduling(1), 39-62.

