A COMPARISON OF VISHNU AND OPL STUDIO

David Montana
BBN Technologies
10 Moulton Street, Cambridge, MA 02138

dmontana@bbn.com

Abstract A reconfigurable scheduler is one that can be configured to solve a wide range
of different scheduling problems without changing the software. Reconfigurable
scheduling holds the promise of drastically reducing the cost of developing au-
tomated, optimized scheduling solutions and hence making optimized schedul-
ing available for many real-world problems for which the cost has so far been
prohibitive. While this promise is still largely unrealized, some reconfigurable
scheduling applications are making progress towards this goal. The best known
and the standard setter is OPL Studio, a commercial product from ILOG. A
second is one that we have developed, called Vishnu. By comparing these two
reconfigurable schedulers, we gain insight into both of them, as well as potential
future developments in the area.

1. Introduction

While there have been many real-world success stories for automatic op-
timized scheduling, the vast majority of scheduling applications are still per-
formed either manually or using simple dispatch rules. A challenge for the
coming years is to make optimized scheduling accessible to the applications
for which it has until this point been impractical due to costs and complexi-
ties. A key part of addressing this challenge is likely to be what we refer to as
“reconfigurable” scheduling [Montana, 2001a].

Most optimizing schedulers have targeted a single problem or narrow class
of problems. Changing such a scheduler to handle a new problem or domain
has required redesigning the scheduler and rewriting portions of its software.
This is expensive and time-consuming and therefore has limited the applica-
bility of this technology.

In contrast, a reconfigurable scheduler can handle a wide range of different
scheduling applications and domains without modification of its software. The
user specifies the problem to solve (data formats, scheduling logic, etc.) as
configuration data, and a solver automatically produces schedules. Reconfig-

2

urable scheduling offers the promise of making optimized scheduling more of
a commodity item (like a spreadsheet).

While there has been significant progress in the development of reconfig-
urable scheduling, the promise remains largely unfulfilled. In this paper, we
examine two reconfigurable schedulers, OPL Studio and Vishnu. We enumer-
ate their similarities and differences, strengths and weaknesses. Based on these
comparisons, as well as our experiences using Vishnu, we summarize with
some ideas on what it will take for reconfigurable scheduling to realize its
promise.

OPL Studio

The Optimization Programming Language (OPL) [Van Hentenryck, 1999]
and its associated solver [Van Hentenryck et al., 2000] were originally a syn-
thesis of previous work in constraint programming (from the artificial intel-
ligence community) and mathematical programming (from the operation re-
search community). On the constraint programming side, languages such as
CHIP [Dincbas et al., 1988] and ODO [Davis and Fox, 1994] allowed the ex-
pression as “programs” of optimization problems using symbolic constraints.
Constraint-based solvers could then perform the optimization specified in such
a program, usually using tree search methods. On the operations research side,
languages such as AMPL [Fourer et al., 1993] and GAMS [Bisschop and Meer-
aus, 1982] allowed the expression as “programs” of optimization problems
using numerical constraints, i.e. mathematical programming problems. Anal-
ogously, solvers could perform the optimization specified by such a program.
OPL combined the ability to handle numerical and symbolic constraints, as
well as combining the best of both solution techniques. OPL also added a va-
riety of scheduling-specific concepts to make scheduling as much a primary
emphasis as other types of combinatorial optimization. One more important
feature that helps set OPL apart is that it is released as a commercial product,
OPL Studio, with all the benefits that such a product (support, documentation,
stability, etc.) provides.

Vishnu

In constrast, Vishnu grew out of work on scheduling using evolutionary
algorithms and, more generally, metaheuristics. Most work on evolutionary
algorithms and metaheuristics for scheduling has focused on special-purpose
solutions tuned to particular problems. While there are some others in this area
investigating schedulers with some amount of reconfigurability, such as [McllI-
hagga, 1997], [Raggl and Slany, 1998] and [Cowling et al., 2000], Vishnu was
the first to incorporate reconfigurability in the same broad sense as OPL. The
original version of Vishnu, which was developed under government funding,

3

is available open source for free download at the web page [Montana, 2001c].
Since then, we have added some critical new features, and while we have not
yet made them publicly available we will discuss them below in the compar-
ison. Since Vishnu was developed originally without any knowledge of the
already existing OPL and since it grew out of a different body of work, it
provides a good counterpoint for comparison. A more detailed, though still
incomplete, discussion of Vishnu is available in [Montana, 2001b] and at the
web page [Montana, 2001c].

2. Comparisons

We divide our comparisons of the two reconfigurable schedulers into three
sections corresponding to their three major components: (i) problem/project
specification, (ii) optimization/solving, and (iii) the surrounding system.

Specifying a Problem/Project

In comparing the two approaches to problem specification, the first differ-
ence to note is that of terminology: what Vishnu callgrablemOPL Studio
calls aproject Both recognize that a problem (we will use Vishnu terminol-
ogy) is divided into two parts. One part, which Vishnu calls $pecifications
and OPL Studio callmode] includes the data formats and the scheduling logic
and is what stays constant over time. The second part dateewhich is of-
ten specified separately because it is large, it can vary, and it often comes from
an external source.

Another immediately apparent difference is that they provide different for-
mats for specifying a problem. OPL Studio represents a problem essentially
as a computer program (with OPL being the language in which the programs
are written). The data formats are specified via struct commands similar to
those in the C programming language. In addition to standard constructs for
standard operations such as arithmetic and looping, there are special keywords
in the language for scheduling-related concepts. (For examggjairesspeci-
fies that a certain task requires a certain resource). Data is included by leaving
placeholders, including indefinite-sized arrays, in the model and then specify-
ing the values in another place, usually another file.

An example OPL program for the Muth-Thompson job-shop scheduling
problem is

int nbJobs = ...;

range JOBS 1..nbJobs;

int nbRes = ...;

range RESOURCES 1. .nbRes;

int resource[JOBS,RESOURCES] = ...;
int duration[JOBS,RESOURCES] R

4

Activity task[i in JOBS, j in RESOURCES] (duration[i,jl);
var int Makespan in O..totalDuration;
UnaryResource tool [RESOURCES] ;
minimize
Makespan
subject to {
forall(i in JOBS)
Makespan >= task[i,nbRes].end;
forall(i in JOBS)
forall(j in 1..nbRes-1)
task[i,j] precedes taskl[i,j+1];
forall(i in JOBS)
forall(j in RESOURCES)
task[i, j] requires tool[resourceli,jl];

};

Vishnu has a different approach. The data formats are represented (i) as
a table when viewed in the GUI, (ii) as XML when written to a file, or (jii)
as database table entries when stored in a database. Despite their different
representation, Vishnu data formats contain essentially the same information
as the OPL structs, which is the names of the data fields plus their associated
data types. The data itself is represented essentially the same way as the data
formats.

The scheduling logic in Vishnu is specified by a set of formulas, each one
associated with a particular hook. A hook is a place where the scheduling al-
gorithm can look for a particular piece of information. For example, the Capa-
bility hook contains the information whether a particular resource is capable of
performing a particular task. Similarly, the Task Unavailabile Times hook de-
termines for what intervals of time a particular task is not available to be sched-
uled. The user (application developer) specifies the information on a hook as a
formula that the scheduling algorithm can evaluate within an appropriate con-
text. For example, the formula resource.skillLevel >= task.requiredSkill placed
on the Capability hook would mean that a resource is capable of performing a
task if the resource’s skillLevel field is at least as large as the task’s required-
Skill field.

An example Vishnu problem specification showing the same information as
is expressed above using OPL is:

step (task) machine (resource)
Field Type Field | Type
id string id string
duration number
machine string
preceedingStep string

Hook Formula

Optimization Criterion | maxover (resources, “res”, complete (res)) - starttime

Capability Criterion task.machine = resource.id

Task Duration task.duration

Prerequisites if (task.preceedingStep =", list (preceedingStep))

Task Unavailable Times mapover (prerequisites, “task2”, interval (starttime, tagk-
endtime (task2)))

[The above scheduling logic is likely to be hard to decipher for those not fa-
miliar with the purpose of each Vishnu hook and the functions available for the
formulas. The documentation at [Montana, 2001c] will provide all the infor-
mation necessary for the interested reader to rapidly decode all this logic. We
provide an explanation only for the first hook and formula. The funatiax-
overloops over a list finding the maximum value of an expression involving a
named element of the list. The functicompletereturns the end time of the
last task assigned to a resource. The variatdetimeis the earliest time that
a task can be scheduled, i.e. the start of the scheduling window. Hence, plac-
ing that formula on the Optimization Criterion hook makes the optimization
criterion be the makespan.]

Each of these two different approaches has its advantages. OPL Studio pro-
vides a compact representation of a problem that is intuitively clear to those
users who have experience with computer programming and scheduling. In
contrast, Vishnu's use of formulas similar to those used in Excel can be more
intuitive to non-programmers. Additionally, the way that Vishnu sets up a ta-
ble of hooks with their associated formulas provides a type of checklist for
what types of information can be specified that can quickly bring novices
up to speed. Vishnu’'s use of XML makes for a verbose textual representa-
tion, but the dual use of XML and database tables for representing data en-
ables the multi-user system with real-time data feeds from external systems
described in Section 1.2.0. One other important difference is that the way con-
straints are expressed as individual statements in OPL is well suited to feed-
ing a constraint-based scheduler, while the way constraints are potentially ag-
gregated into formulas in Vishnu is better suited for the genetic-plus-greedy
scheduler that Vishnu uses (described in Section 1.2.0).

While the two reconfigurable schedulers use different formats for specifying
problems, much of the same types of information can be expressed (as one
might expect). Some of the key types of information that they both can express
are:

m Tasks/Activities and Resources Both OPL and Vishnu allow the def-
inition of tasks(or activitiesin OPL) to be scheduled and resources to
perform the tasks. In Vishnu, in addition to tasks there are also activities,
which are fixed times of unavailability for resources (such as doctor’s
appointments or scheduled maintenance).

= Duration - Both schedulers allow specification of how long a task will
take to perform that is dependent on which resource is performing it.

= Wrapup/Setup/Transition Times - Both schedulers allow for the times
that resources must potentially spend between tasks, with OPL calling
thistransitiontimes and Vishnu referring teetupandwrapuptimes. In
Vishnu, these times can be separately color coded on the Gantt charts.

= Capability - Both schedulers allow specification of which resources can
perform which tasks. In Vishnu, this can be a dynamic concept depen-
dent on the current state of the resource.

= Multitasking and Multiple Resources - Both schedulers allow speci-
fication of whether a resource can handle only a single task at a time
or multiple tasks at a time. They also allow a task to require multiple
resources.

m Capacity - Both schedulers permit specification of limits on the number
of tasks that a resource can perform over a period of time or (in the case
of multitasking) at one time.

» Task Unavailability - Both schedulers provide a way to specify when
a task is not available to be scheduled, usually due to constraints on
precedence, release dates, or due dates.

= Scheduling Horizon -Both schedulers allow specification of an earliest
and latest time at which tasks can be scheduled.

= Optimization Criterion - Both schedulers allow specification of the sin-
gle evaluation function (potentially a combination of multiple criteria)
that the scheduler is trying to optimize. Vishnu also provides a way to
specify to the greedy scheduler the marginal cost of assigning a particu-
lar task to a particular resource.

= Search Directives -Vishnu allows the user to select the parameters of
the genetic algorithm (population size, convergence rate, etc.). OPL
Studio not only provides the means for a user to select between search
heuristics but also allows users to define search heuristics of their own.

Some types of constraints that are in OPL but not yet in Vishnu are the
following. (Note that all of these are consistent with the Vishnu scheduling
algorithm. We have just not yet needed this functionality for any problem to
which we have applied Vishnu yet.)

= Breakable activities -OPL provides the ability to allow tasks to be per-
formed over multiple disconnected periods of time.

7

Discrete energy resources OPL allows scheduling of tasks at various
levels of time resolution. This allows scheduling of near-term tasks to a
high level of detail and scheduling further in the future more coarsely.

Some types of constraints that are in Vishnu but not in OPL are the follow-

ing.

Grouped multitasking - Vishnu allows specification that two tasks can
be performed simultaneously by the same resource but only if they start
and end at the same time. This is useful for some transportation prob-
lems. For example, a boat can transport multiple items simultaneously
from one port to another port but must pick them up and drop them off
at the same time.

Auxilliary tasks - There are times that completing a task requires also
completing some supplementary (or auxilliary) tasks, and since these
tasks are not done simultaneously this cannot be modeled by multiple
resources. For example, flying an airlift mission is a task that would re-
quire a plane and a crew for its duration but can also require maintenance
resources before the mission and at its stopovers, air refueling resources
at certain positions, and runway resources at various stops. Vishnu pro-
vides the capability to specify auxilliary tasks.

Dynamic rescheduling -Vishnu provides the support to allow defini-

tion of scheduling logic not just to build a schedule from scratch but
also to modify an existing schedule. Past assignments can be frozen, i.e.
fixed to the same time and resource as a hard constraint. More interest-
ingly, maintaining past assignments can also be a soft constraint. Vishnu
provides functions such as previousResource and previousStartTime to
access previous assignment data in formulas. Furthermore, Vishnu pro-
vides access to the commitment levels that a human user has associated
with particular assignments (where a commitment level specifies how
important it is that the scheduler maintain the present assignment).

Display directivies - As we discuss in Section 1.2.0, Vishnu allows the
user to configure custom displays. It does this using the same type of
formulas used to specify the scheduling logic to allow specification of
(i) color coding of Gantt charts with legends, (ii) spreadsheet-like tables
with computed quantities, (iii) filters, and more.

Optimization/Solving Techniques

The two reconfigurable schedulers use two different approaches to optimiz-
ing schedules. OPL Studio primarily uses constraint-based scheduling, where
each constraint becomes a branch point in a tree. A variety of heuristics are

8

used to determine how best to construct the tree and how best to search it.
Many of these heuristics apply only in limited cases, and the optimization
code examines the characteristics of the problem in deciding which heuris-
tics to apply. The constraint programming scheduler can quickly produce a
good feasible schedule, and with time it works to continually improve it.

Vishnu uses an approach that involves a genetic algorithm feeding task or-
derings to a greedy scheduler. The greedy scheduler does the main work in
building the schedule one task at a time, but the schedule thus build generally
depends on the order in which the tasks were scheduled. Hence, the genetic al-
gorithm optimizes this ordering. We have not yet had the opportunity to refine
this algorithm to recognize and use specialized algorithms for special cases.
This leads to comparatively poor performance on standard scheduling bench-
marks (such as the Muth-Thompson job-shop scheduling problem). However,
the types of problems for which reconfigurable schedulers are most applicable
are not the standard benchmarks, with their very simple constraints, but rather
real-world problems with complex constraints for which there are no existing
algorithms. For such problems, Vishnu very quickly devises a good solution
(in comparison with human schedulers) with the first output from the greedy
scheduler and improves it with time via the evolutionary process.

While complex, real-world problems generally do not have existing algo-
rithms against which to compare, they do provide a good means of comparing
the performance of reconfigurable schedulers. We therefore are in the process
of selecting one or two such real-world scheduling problems to implement us-
ing both Vishnu and OPL Studio in order to compare the results. Unfortunately,
we have not yet completed this process.

The Surrounding System: User Interfaces, Databases and
Data Interfaces

In the real world, scheduling is usually not just about performing an op-
timization on a particular set of data. Instead, it is usually a dynamic pro-
cess, involving both creation of an initial schedule and a continuous process
of schedule repair, both prior to and during execution. Furthermore, one or
more humans interact with the automated scheduler to help create the final
schedules, making this a mixed-initiative process. In addition, the schedul-
ing system interacts with other systems in real time, continually reading data
updates and writing schedules back.

The usefulness of a reconfigurable scheduler for application to real-world
problems usually depends at least as much (and often much more) on its ability
to support this full process of scheduling as on its optimization performance.
We now describe the capabilities of OPL Studio and Vishnu to support such

9

a real-time, mixed-initiative scheduling system, focusing primarily on Vishnu
because it provides much greater capabilities in this area.

For visual display of schedules, OPL Studio does provide Gantt charts but
not much beyond this. Mechanisms for a human scheduler to cooperatively
work with the automated scheduler are minimal. For external data interfaces,
OPL Studio does provide the ability to read its data from and write its schedules
to either a database of any standard variety or an Excel spreadsheet. (ILOG
does sell software components outside of OPL Studio to provide additional
display and interface capabilities, but these require the user writing code to
utilize them and hence are not inside our definitiomemfonfigurable)

Vishnu provides the features to create a user interface for the end user whose
job it is to work with the automated scheduler to create schedules. One such
feature is Gantt charts with problem-specific color coding (what one of our
customers, the U.S. Air Force, cahlginbow chart3. The color coding pro-
vides easier visual recognition of task and activity types. This is done using
formulas that determine which tasks and activities use which color. A second
feature is the ability to create custom-designed tabular displays of the data.
Formulas compute what items go in which entry of the table (similar to Excel)
as well as how to color the entries so as to provide visual indications of results
of interest to the user. A third feature is manual assignment, whereby either
by drag-and-drop or entry in a dialog box the user can override the automated
scheduler’s schedule, reassigning a task to a different resource and/or a differ-
ent time. A fourth feature is the ability to lock assignments in place. Vishnu
provides the capability for a user to specify varying levels of commitment to
an assignment, penalizing the scheduler for changing this assignment, as well
as the ability to freeze an assignment, specifying to the automated scheduler
that the assignment must remain fixed. A fifth feature is custom-designed fil-
tering. Formulas provide the mechanism for users to develop their own logic
for filtering the data in visual displays.

Vishnu also provides the capability to automatically create a local database
for storing the problem specification, data, and schedules. One situation in
which this is important is when there are multiple humans working on a sched-
ule. With the information stored in a database, the different users can all
be working simultaneously and sharing results, still allowing the automated
scheduler and real-time data feeds to also update the data. Vishnu furthermore
provides a web-based interface to this database that allows users to access and
modify the data using a browser, even if they are outside the local network.

A third important aspect of a full scheduling system that Vishnu provides
is the ability to integrate with external systems, particularly for the purpose of
accepting real-time data feeds. Because all data objects must be specifically
named, Vishnu can accept updates to specific data objects (e.g., a change in
the value of a field of a particular task object). The XML format provides a

10

standardized format for communicating the data. Plus, Vishnu provides all the
mechanisms required to send such XML updates to update the database via the
web server or to update a Java process via RMI.

3. Future Directions

Having compared the current states of the two reconfigurable schedulers, we
now discuss issues that need to be addressed for these (or other) reconfigurable
schedulers to fulfill their promise.

Cost - As more people use a product, the cost tends to fall. As recon-
figurable schedulers prove themselves in real-world applications and start to
address the other issues below, they can find more users and hence lower the
cost. However, it is not clear that this process will drive the cost low enough
for 20-person shops scheduling daily production or towns scheduling athletic
fields. Such users may require free software (via open source development).

Optimization Performance - In the traditional settings for optimized schedul-
ing (large organizations with large financial consequences depending on sched-
ules), the optimality of the schedules is what matters. For the potential cus-
tomers for reconfigurable scheduling (smaller, cost-conscious organizations),
schedule optimality is much less important although definitely not inconse-
guential. The issue is cost vs. benefits, and the potential contribution of recon-
figurability is massively reducing the life cycle costs while sacrificing as little
as possible of the benefits of optimized schedules. So, reconfigurable sched-
ulers need to continue improving the scheduling algorithms, though not at the
expense of the other issues discussed. The approach that OPL Studio has taken
of recognizing special cases and applying specialized algorithms while still
maintaining the general-purpose capability has been successful and is what we
should also apply in Vishnu.

System Construction -As discussed in Section 1.2.0, an important func-
tionality of a reconfigurable scheduler is its ability to create a full scheduling
system rather than just a standalone optimizing scheduler. While OPL Stu-
dio and especially Vishnu do provide some such support, there are potential
improvements. These include (i) better mechanisms to support coordination
between multiple human schedulers and an automated scheduler and (ii) better
support for integration with common data sources (e.g., Vishnu should inte-
grate with Excel and they both could support common integration platforms
such as IBM WebSphere).

Usability - Nomatter how powerful an application may be, if it is hard to
use then usually it will not be used. In the case of reconfigurable schedul-
ing, there are two types of users, application developers and end users, and
hence two types of usability. Application developers require a GUI designed
to allow problem specification (which both schedulers provide), good docu-

11

mentation and easy installation (which OPL Studio does provide but which
needs improvement in Vishnu), debugging and diagnosis tools, and tools for
constructing the scheduling system including the end user GUI. End users need
intuitive displays for viewing and analyzing the data and schedules, as well as
mechanisms and displays for interacting with the automated scheduler. While
Vishnu in particular does provide some capabilities for the end user, in both
schedulers the application developer is the primary focus.

Range of Applicability - This is probably the most important and overrid-
ing issue. For both OPL Studio and Vishnu, despite their flexibility, there are
still too many problems that cannot be expressed and solved. This is poten-
tially fixable by a continual process of expanding capabilities. Our philosophy
with Vishnu is that each time we encounter a new scheduling problem to solve,
if Vishnu in its present form cannot solve it, then we expand its capabilities
so that it can, thereby continually making it more powerful. The trick in this
process is to remain general enough that the new functionality added for a spe-
cific problem will apply to a variety of other problems, because otherwise we
are adding complexity without adding power. In the case of ILOG and OPL
Studio, there have been some enhancements to the language and solver that
extend the range of applicability, but these have been slow in being released
(partly due to the existence of the ILOG Scheduler product, a set of schedul-
ing routines on which a user can develop a custom scheduling application,
that provides a fallback for problems not solvable via OPL Studio). Reconfig-
urable scheduling will fall short of its promise until reconfigurable schedulers
are nearly universal in their ability to capture the logic of different scheduling
problems and solve these problems.

References

Bisschop, J. and Meeraus, A. (1982). On the development of a general algebraic modeling
system in a strategic planning environmeviithematical Programming Studg0:1—-29.

Cowling, P., Kendall, G., and Soubiega, E. (2000). A hyperheuristic approach to scheduling a
sales conference. [Belected Papers of the 3rd PATAT Confereipeges 176—190.

Davis, G. and Fox, M. (1994). ODO: A constraint-based architecture for representing and rea-
soning about scheduling problems. Pnoceedings of the 3rd Industrial Engineering Re-
search Conference

Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., and Berthier, F. (1988).
The constraint logic programming language CHIPPmceedings of the International Con-
ference on Fifth Generation Computer Systepages 693—702.

Fourer, R., Gay, D., and Kernighan, B. (1998MPL: A Modeling Language for Mathematical
Programming Duxbury Press, Belmont, CA.

Mcllhagga, M. (1997). Solving generic scheduling problems with a distributed genetic algo-
rithm. In Proceedings of the AISB Workshop on Evolutionary Compugiages 85—-90.

Montana, D. (2001a). Optimized scheduling for the masseSelmetic and Evolutionary Com-
putation Conference Workshop Prograpages 132—-136.

12

Montana, D. (2001b). A reconfigurable optimizing scheduleProceedings of the Genetic and
Evolutionary Computation Conferengeages 1159-1166.

Montana, D. (2001c). Vishnu reconfigurable scheduler home page. http://vishnu.bbn.com.
Raggl, A. and Slany, W. (1998). A reusable iterative optimization library to solve combinato-
rial problems with approximate reasonirigternational Journal of Approximate Reasonjng

19(1-2):161-191.

Van Hentenryck, P. (1999The OPL Optimization Programming Languad#lT Press, Cam-
bridge, MA.

Van Hentenryck, P., Perron, L., and Puget, J.-F. (2000). Search and strategies iACNAL.
Transactions on Computational Logit(2):285-320.

