
A Reconfigurable Multiagent Society for Transportation
Scheduling and Dynamic Rescheduling

David Montana, Gordon Vidaver, and Talib Hussain
BBN Technologies

10 Moulton Street, Cambridge, MA 02138
Email: {dmontana,gvidaver,thussain}@bbn.com Phone: 617-873-2719/3358/6861

Abstract— We have investigated the use of an agent-based
system to automate the process of scheduling all the trans-
portation assets for the U.S. military. For this problem, the
creation of a fixed schedule based on static requirements is
insufficient. Instead, we need to be able to maintain the
schedule as a dynamic entity in the face of changing require-
ments, unreliable assets, and unexpected events during execu-
tion. Towards this end, we have focused on two main areas:
dynamic rescheduling and dynamic load management. Dy-
namic rescheduling involves updating an existing schedule in
response to changes in the scheduling resources and require-
ments, and is a special challenge in a multiagent environment.
We discuss the approach we used to propagate and coordinate
changes between the different agents. Dynamic load manage-
ment includes the ability of the multiagent society to change
its structure in response to changing computational require-
ments. We examine a set of techniques, including dynamic
agent creation, to continually update the allocation of com-
putational resources to the scheduling process.

1. INTRODUCTION

The problem of scheduling all the transportation assets for the
U.S. military is very complex. There are a huge number of as-
sets to schedule, items/people to move, and tasks to perform.
The heterogeneity of the assets and tasks necessitates the use
of a variety of types of scheduling logic and procedures. Ad-
ditionally, the interactions and dependencies between differ-
ent parts of the large problem add to the complexity.

Military transportation scheduling is currently performed by a
team of humans. It can take hundreds of people days or weeks
to schedule a deployment of troops and equipment. When de-
viations from the plan occur due to unanticipated events (such
as equipment failures or new requirements), the human plan-
ners usually fall back to the easiest solution, which is often
extremely inefficient.

We have worked for nearly a decade on automating the pro-
cess of military transportation scheduling. We use an agent-
based system (whose structure is discussed in Section 2),

The work described here was performed under the DARPA UltraLog con-
tract #MDA972-01-C-0025.

which is a natural fit for such a large, interconnected problem.
In previous work described in an earlier paper [8], we focused
on building the initial transportation schedule to the lowest
level of detail. However, the construction of a fixed schedule
based on static requirements is not enough. We need to be
able to maintain the schedule as a dynamic entity in the face
of changing requirements, unreliable assets, and unexpected
events during execution. Hence, we recently have focused
on two main areas: dynamic rescheduling and dynamic load
management.

Dynamic rescheduling involves updating an existing sched-
ule in response to changes in the scheduling resources and re-
quirements, as well as the passage of time. The changes can
be as small as a vehicle needing repairs or as large as a ma-
jor new deployment. Dynamic rescheduling is hard enough
with a single scheduler. However, as we discuss in Section 3,
with a whole society of scheduling agents, there are complex
issues of interactions and propagation of changed schedules
between agents. (The general nature of interagent dynamics
has been discussed in places such as [10], while [4], [9], and
[5] examine issues specifically dealing with dynamic multia-
gent scheduling.)

Dynamic load management refers to the process by which
the multiagent society can shift and adjust its computational
load in response to changing requirements. One property en-
abling dynamic load management is society reconfigurabil-
ity, the ability of the multiagent society to change its struc-
ture in response to changing requirements. As described in
Section 4, we draw upon features in the Cougaar architecture
(presented in [2] and [7]), such as agent creation and agent
persistence, to automatically adjust the mapping of computa-
tional resources to agents as the computational requirements
change. (Such reconfigurability is also the goal envisioned
by work such as [6] and [1].) Another important aspect of
dynamic load management is the use of mixed-fidelity sched-
uling with adjustable time horizons. By changing how far
into the future the scheduling agents perform detailed sched-
uling and aggregate-level scheduling, the society can adjust
the load on the agents.

Our system was demonstrated on a full-scale problem using
real-world military data, and we present the results in Sec-
tion 5.



Figure 1. The initial seven-agent transportation scheduling
community.

2. AGENT ARCHITECTURE

The Ultralog program has created a large demonstration mul-
tiagent society for military logistics planning based on the
Cougaar multiagent infrastructure [3]. The transportation
scheduling community is part of this larger society. Although
small in terms of number of agents, the transportation com-
munity plays a central role. All supplies, personnel, and land
vehicles in the plan must be transported from their original
locations in the continental U.S. (CONUS) and Europe, to air
or sea ports, across the ocean, and then across land to their
final destinations.

The scale of the transportation problem is large enough that it
must be divided into subproblems and distributed across mul-
tiple agents. Originally, this consisted of a relatively coarse
decomposition into seven agents, as shown in Figure 1. Here,
transportation requests enter at the highest level of the hierar-
chy of agents, the Transportation Command (TRANSCOM)
agent. TRANSCOM’s job is to route tasks: it chooses
whether an item should go from the United States to a the-
ater of operations by sea or air. This choice is represented as
a Cougaar allocation of the task of transportation to one of
two subordinates: GlobalAir or GlobalSea. The job of these
agents is to orchestrate the planning of the legs of the journey,
starting with the final leg and known due date and working
backwards. These agents expand incoming tasks into three
subtasks: theater ground transport, then sea/air transport, then
CONUS ground transport. These tasks are then allocated to
the agents whose job is to schedule these legs against phys-
ical assets (trucks, planes, ships). As each leg is scheduled,
the results (a Cougaar AllocationResult) of when the task is
scheduled to depart is sent back to the orchestrating agent,
and then this agent creates the next task in the sequence with
an arrival time preference requiring that it arrive no later than
the next task starts.

Note there is a bi-directional flow of information: a down-
wards flow of requirements and decomposition of those re-
quirements into manageable sub-problems, and an upwards
flow of response information about how the subordinate
agents satisfied the preferences of those requirements.

As we increased the scale of the logistics planning prob-
lem and with it the number of agents generating demand for
transportation, the seven-agent transportation community be-
came overwhelmed. With seven agents, the community could
be distributed across at most seven machines. Furthermore,
some of these machines were highly underutilized because
the load was not equally balanced across machines. Our first
step in addressing issue of scalability was to manually divide
the community into 20 agents rather than seven. (Below we
discuss how we later automated agent splitting.) If 20 ma-
chines are available, we could then distribute the workload
over all the machines. If not, having finer-grained agents al-
lowed us to better balance the load (originally manually and
later automatically, as described below) by evening out the
load across the existing machines.

Figure 2 shows this 20-agent society. In some cases, the prob-
lem handled by an agent was fully separable. For example,
ammunition travels on special ammunition ships, so it was
easy to split off AmmoSea as a separate agent from GlobalSea
to specifically handle scheduling of ammunition on ships. In
others cases, we needed to split an agent into two or more
agents just because it was overloaded without a natural divi-
sion. For example, Theater Ground A and Theater Ground B
each handle half of the tasks and resources for ground trans-
portation to the destination. In this case, we expect some de-
cline in the optimality of the schedules due to the division of
the problem into subproblems, but this is usually minor and
is a necessary cost of scalability.

3. DYNAMIC RESCHEDULING

Rescindsare the basic mechanism that enable agents to co-
operatively perform dynamic rescheduling. Rescinds allow
one agent to withdraw either (i) a previous request to another
agent to perform a task or (ii) a previous promise to another
agent that it would perform a requested task. Rescinds gen-
erally force a ripple effect through a portion of the society,
prompting the society as a whole to compensate for whatever
change caused the rescheduling.

There are two basic types of changes that cause reschedul-
ing: a change in requirements or a change in asset state. A
change in requirements enters the transportation community
at the top level (the TRANSCOM agent), and its effects fil-
ter downwards in the hierarchy. For example, consider the
situation (shown in Figure 3) where a transport request from
some external agent is modified so that the item must arrive a
day earlier than previously specified. (Possibly the comman-
ders have moved up the day of a planned strike.) This causes
the TRANSCOM agent to rescind its previous request to the
GlobalSea agent and then send a new request with the earlier
date. This in turn causes GlobalSea to rescind its requests to
its subordinates in the hierarchy and send new requests. Thus,
a new revised schedule is created.

A change in asset state occurs at a low-level agent. If the low-
level agent can adjust the schedule so that it can continue to



Figure 2. A 20-agent community of transportation scheduling agents. Additional agents have been added to route incoming
tasks among distinct subproblems, and agents doing scheduling against physical assets (denoted with a dotted boundary) have
been divided.

meet the requirements of the tasks requested of it despite the
change in asset state, then no rescind is necessary. However,
if the agent can no longer meet all the requests that it pre-
viously agreed to perform, then it must rescind one or more
of the positive replies. This causes the agent’s superior to
attempt to modify its schedule in such a way that it can con-
tinue to meet the requirements imposed on it. If it can do so,
it informs its subordinate agents of any schedule changes via
rescinds. If it cannot alter its schedule to meet its require-
ments, it has to communicate this one level higher. Poten-
tially, the rescind can get propagated out of the transportation
community and back to the requesting agents, which then has
to modify the request.

4. DYNAMIC L OAD M ANAGEMENT

The transportation scheduling problem may impose signif-
icant changes in scheduling requirements that may affect a
variety of different types of assets and to varying degrees.
For instance, the needs of a mission may change and require
large numbers of certain types of assets to be scheduled, and
a small number of other types of assets.

In a static agent structure, e.g., with specific agents maintain-
ing the responsibility to schedule specific types of assets with
specific computing resources, certain changes in mission re-
quirements may place a much heavier load on some agents
and very little load on others. The result is that certain agents
may become overloaded while others may underutilize the
computing resources at their disposal.

To accommodate these asymmetrical loads upon the agents
while also performing at high efficiency, one key capability
that we incorporated into our agent system was adaptive load
balancing to automatically adjust the mapping of computa-

tional resources to agents as the computational requirements
change. The simplest way to do this is to just move an agent
from one CPU to another less loaded CPU. Cougaar provides
an agent mobility mechanism to save the state of an agent and
reconstitute it on a different machine [7]. The service discov-
ery mechanism allows connections with other agents to re-
form. [Note that this provides not only a mechanism for load
balancing but also a means of enhancing survivability by en-
suring the continuing operation of agents without losing state
if a machine goes down.] The problem with this approach to
load balancing is that it does not work if the agent has more
load than can be handled by a single CPU.

For this situation, our system has the capability to spawn
new agents of the same type to handle the additional work-
load [7]. A four step process is followed to initiate a re-
balanced load. First, afalling-behindsensor detects instances
when an agent is unable to process requests in a timely man-
ner. For instance, thefalling-behindsensor may notice that
one of the leaf agents that plans against physical assets (e.g.,
PlanePackerB), is not allocating all its assets fast enough.
Second, a new agent is spawned on a new (or underutilized)
CPU and heap. Third, the current (overloaded) agent trans-
fers copies of half its physical assets (e.g., planes) to the new
agent, thereby splitting the load evenly across the two agents.
Finally, the new agent broadcasts itself as a new schedul-
ing agent of the same type as the current agent (e.g., Air-
TransportationProvider) via Cougaar Service Discovery. The
leaf agent’s superior (e.g., ConusAir), which orchestrates the
planning process, gets this report of a new subordinate that
provides this service. It can now do round-robin assignment
of new incoming tasks across all its subordinates with that
shared role.



Figure 3. Cooperative dynamic rescheduling occurs when reactions to changes in requirements or changes in the assets’ state
ripple through the community via the mechanism of rescinds.

Figure 4. Illustration of scheduled tasks and unavailable assets before and after agent creation, for (a) original PlanePacker
agent, (b) same agent after agent creation, and (c) newly created agent.



Figure 5. The time horizons for both detailed and aggregate-level scheduling can be adjusted in response to changes in load
on a scheduling agent.

Once the load has been re-balanced, our system applies two
restrictions to ensure consistent and appropriate planning (as
shown in Figure 4). First, all the transferred assets are marked
asunavailablein the new agent for those periods in which the
assets have been previously been scheduled. This ensures that
all plans made against the transferred assets are maintained.
Second, all the transferred assets are marked asunavailablein
the original agent. This ensures that new tasks in the original
agent are not made against transferred assets (i.e., removes
them from future consideration in planning within the origi-
nal agent).

In addition to society reconfiguration, adjustable time hori-
zons provide another equally important, although more mun-
dane, technique for load management. Within a certain time
horizon into the future,T1, individual items are included in a
detailed schedule/plan. Between timeT1 and some more dis-
tant time in the future,T2, plans are created at a coarse level,
based on large aggregates of items. BeyondT2, no plan is
made. This division of the future into three different levels of
planning (i.e.,mixed-fidelity planning) allows each schedul-
ing agent to concentrate its efforts planning for the near fu-
ture, which is both more urgent and less likely to change. If
the falling-behindsensor indicates that the agent is not cur-
rently keeping up with its assigned workload, the agent can
lessen its workload by changing the values ofT1 andT2 so
as to be planning less far into the future (as illustrated in Fig-
ure 5).

Note the use of mixed-fidelity planning requires the ability
to perform dynamic rescheduling. As coarse plans transform
to detailed plans due to the passage of time or a lightened
load, the agents must adapt the schedule accordingly using
the dynamic rescheduling mechanisms discussed above.

5. EXPERIMENTS

In our first experiment, our system was used to plan a so-
lution to moving hundreds of different military units (their
equipment and personnel) from the United States and Europe
to Turkey over a 180-day period. There were a total of 22,118
equipment items and 34,058 people to move and 20 ships, 80
planes, and 265 trucks and railcars available for use across the
transportation scheduling community. Three configurations
of the community were used within a larger society of over
1000 agents. The first configuration used the original seven

Figure 6. Results for static schedule creation.

Figure 7. Results for dynamic rescheduling.

agent community, as illustrated in Figure 1, performing high
fidelity planning over the entire 180 days. The second and
third configurations used the improved twenty agent commu-
nity, as illustrated in Figure 2, with the second one performing
high fidelity planning over the entire 180 days and the third
one performing mixed-fidelity planning, with a high-fidelity
period of only two days. Figure 6 illustrates the difference
in the time to plan the entire problem for each configuration.
The twenty-agent mixed-fidelity case demonstrated the best
response time.

In our second experiment, the same system configurations as
above were applied to the same initial planning problem fol-
lowed by an additional replanning stage, in which one brigade
(7 units, comprising 1654 items and 3479 people) moved its
arrival time requirement from 10 days to 15 days from the be-



ginning of the mission. Figure 7 illustrates the time required
for the replanning stage only. Again, the twenty agent mixed-
fidelity case demonstrated the best response time.

6. CONCLUSION

The problem of military transportation scheduling is inher-
ently dynamic. New and changing requirements, as well as
unanticipated events, necessitate the continual revision of any
schedule. The combination of such a dynamically evolving
environment with a multagent society presents a special set of
challenges. Some of these challenges are algorithmic: agents
need to cooperate on their updates so as to maintain a glob-
ally good schedule and not cause uncontrolled dynamics in
the society. Others of these challenges are structural: as the
computational needs shift along with the changing require-
ments, the society needs to reassign computational resources
to meet these needs. We have developed a set of techniques
to address both types of challenges, creating a multiagent so-
ciety for transportation scheduling that robustly handles the
dynamic aspects of this problem.

REFERENCES

[1] Bradshaw, J., N. Suri, A. Canas, R. Davis, K. Ford, R.
Hoffman, R. Jeffers, and T. Reichherzer: 2001, ‘Ter-
raforming Cyberspace’.IEEE Computer34(7), 48–56.

[2] Brinn, M., J. Berliner, A. Helsinger, T. Wright, M.
Dyson, S. Rho, and D. Wells: 2004, ‘Extending the
Limits of DMAS Survivability: The UltraLog Project’.
IEEE Intelligent Systems19(5), 53– 61.

[3] Cougaar.org: 2004, ‘Cognitive Agent Architecture
(Cougaar) Home Page’. http://www.cougaar.org.

[4] Cowling, P., D. Ouelhadj, and S. Petrovic: 2003, ‘A
multi-agent architecture for dynamic scheduling of steel
hot rolling’. Journal of Intelligent Manufacturing14(5),
457–470.

[5] Dahl, T., G. Sukhatme, and M. Mataric: 2002, ‘Sched-
uling with Group Dynamics: A Multi-Robot Task-
Allocation Algorithm based on Vacancy Chains’. Tech-
nical Report CRES-02-007, Center for Robotics and
Embedded Systems.

[6] Hannebauer, M.: 2002,Autonomous Dynamic Recon-
figuration in Multi-Agent Systems: Improving the Qual-
ity and Efficiency of Collaborative Problem Solving.
Springer-Verlag.

[7] Helsinger, A., K. Kleinmann, and M. Brinn: 2004, ‘A
Framework to Control Emergent Survivability of Multi
Agent Systems’.Third International Joint Conference
on Autonomous Agents and Multiagent Systems (AA-
MAS’04). pp. 28–35.

[8] Montana, D., J. Herrero, G. Vidaver, and G. Bidwell:
2000, ‘A Multiagent Society for Military Transporation
Scheduling’.Journal of Scheduling3(4), 225–246.

[9] Wagner, T. and V. Lesser: 2000, ‘Design-to-Criteria

Scheduling: Real-Time Agent Control’.Proceedings
of AAAI 2000 Spring Symposium on Real-Time Au-
tonomous Systems. pp. 89–96.

[10] Youssefmir, M. and B. Huberman: 1997, ‘Clustered
volatility in multiagent dynamics’.Journal of Economic
Behavior and Organization32(1), 101–118.


