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Abstract

Most artificial neural networks have nodes that apply a simple static transfer func-
tion, such as a sigmoid or gaussian, to their accumulated inputs. This contrasts with
biological neurons, whose transfer functions are dynamic and driven by a rich inter-
nal structure. Our artificial neural network approach, which we call state-enhanced
neural networks, uses nodes with dynamic transfer functions based on n-dimensional
real-valued internal state. This internal state provides the nodes with memory of past
inputs and computations. The state update rules, which determine the internal dy-
namics of a node, are optimized by an evolutionary algorithm to fit a particular task
and environment. We demonstrate the effectiveness of the approach in comparison to
certain types of recurrent neural networks using a suite of partially observable Markov
decision processes (POMDPs) as test problems. These problems involve both sequence
detection and simulated mice in mazes, and include four advanced benchmarks pro-
posed by other researchers.

Keywords - state-enhanced neural networks, neuroevolution, POMDP, dynamic neu-
ron model

1 Introduction

Biological neurons have a complex and dynamic internal state, which includes the con-
centrations of proteins and other chemicals and the cell’s physical structure. This state
is constantly changing in response to not only the external stimuli the cell receives but
also the neuron’s internal processes driven by instructions from the genes. All the be-
havior of a neuron is the result of this complex interaction between genome, internal
state, and external stimuli. This behavior includes development (division, specializa-
tion, etc.) and learning, but most importantly for this paper the computational process.
The computational outputs from a biological neuron are a function of its internal state
as well as its inputs, and can therefore reflect the history of all its inputs. In other words,
a neuron has a dynamic response.

In contrast, the nodes in most artificial neural networks have no internal state.
Instead, the computational output of each node is calculated as a static map from the
input, where most commonly this transfer function is a sigmoid. Therefore, these nodes
lack the richness of computational structure of biological neurons.



This paper investigates the use of a dynamic transfer function based on internal
state in the nodes of artificial neural networks. As for biological neurons, the inter-
nal dynamics of the node (as specified by a set of state update rules) is determined by
a (artificial) genome. Evolution acting on the genome optimizes the node internal dy-
namics for the particular role the node plays and the task that the neural network needs
to perform.

Node internal state provides memory for the computational process. This mem-
ory can be either long-term or short-term, with the distinction being that the former
is retained beyond the scope of a particular task to be performed and the latter is not.
In this paper, we restrict our attention to short-term memory and its use to retain past
observations and decisions to complete a task. For example, to perform a given task,
an agent might need to remember that ten seconds ago a light blinked on its left side
or that a few steps earlier it made a right turn. Because some tasks require maintaining
this memory for relatively long periods of time, Hochreiter and Schmidhuber (1997) use
the term long short-term memory to describe it; alternatively, Gomez and Schmidhuber
(2005) refer to it as deep memory. The experiments of Section 4 investigate a variety of
problems requiring deep memory and demonstrate the ability of state-enhanced neural
networks to learn to perform such tasks.

[Note that the most common approach to short-term memory in neural networks
is the purely manual one: create by hand some external structure for accumulating
past observations and feed them into the neural network as inputs. For example, for
time series prediction, there is usually some buffer external to the neural network that
saves the last N values of the times series, which are provided as inputs to the neural
network. However, for less structured problems it is not clear what observations to
save, plus it is desirable for a learning algorithm to not require external assistance.]

Section 2 discusses related prior work. Section 2.1 provides a general overview of
neuroevolution, i.e. evolutionary algorithms applied to the design of neural networks.
Section 2.2 describes research on gene regulatory networks (GRNs). Like our work,
the GRN work is concerned with interactions between an evolved genome and node
internal state. The difference is that the GRN approaches focus on development while
ours focuses on the computational process. (Note that these two approaches are po-
tentially complementary as described in Montana et al. (2006).) Section 2.3 discusses
other neural networks that use nodes with dynamic transfer functions. Unlike our
approach, which uses a genetic algorithm to optimize the dynamical behavior of the
nodes, the node internal dynamics for these other types of networks are defined by
hand. Section 2.4 discusses other approaches to the solution of POMDPs, particularly
those requiring deep memory. To date, some of the most effective general approaches to
short-term memory internal to neural networks use recurrent networks trained by evo-
lutionary algorithms. These include ESP by Gomez and Schmidhuber (2005), CTRNN
training by Blynel and Floreano (2003), and Evolino by Schmidhuber et al. (2007). We
compare the performance of our approach with these techniques on problems similar
to the benchmarks that they utilized.

Section 3 discusses state-enhanced neural networks. Section 3.1 details the un-
derlying model we use for internal state and the state update rules that determine its
(nonlinear) dynamic behavior. These state update rules are encoded in a genome that
is described in Section 3.2 and is similar to the genomes used in GRN approaches. Each
gene specifies a change to the value of a single state variable as a function of (i) the val-
ues of other state variables and (ii) the aggregate input to the node from other nodes.
The genome also contains the values for all the connection weights. Section 3.3 de-



scribes the genetic algorithm that optimizes the genome, and hence the state update
rules and connection weights, for different tasks.

Section 4 describes experiments that evaluate the effectivness of our approach. We
have defined a set of different test problems, all of which are partially observable Markov
decision processes or POMDPs. POMDPs are a class of decision problems for which cur-
rent decisions cannot be based on just current observations but also must consider past
observations and decisions. We wanted to use a variety of different test problems to
demonstrate that our technique is generally applicable and not just suited to a single
problem or domain. For memory-based decision problems, there is no standard suite
of tests analogous to the UCI Machine Learning Repository for pattern classification
problems administered by Asuncion and Newman (2007). Therefore, we have defined
our own test suite containing both sequence detection and mouse-in-maze problems.
Some of the problems were selected because they are the same or similar to benchmarks
used to evaluate competing techniques and hence provide a means for comparing with
other approaches. The other problems were selected to showcase the capabilities of our
approach in ways previously not demonstrated for other techniques. All the problems
can be solved using state-enhanced neural networks. Hence, the experiments show
that our technique provides capabilities to solve deep-memory POMDPs at least com-
parable to those demonstrated for the best alternative neural-network approaches.

2 Previous Work

We now provide a summary of some of the previous work most closely related to ours.

2.1 Neuroevolution: A Brief Overview

There has been a large amount of work in the area of neuroevolution, i.e. evolutionary
algorithms applied to neural networks, too much to discuss all of it in detail here. A
good summary of the field, although a bit out-of-date at this time, is given by Yao
(1999). Another good summary that focuses on the more recent work is by Floreano
et al. (2008). We refer the reader interested in the entire field to these papers. In this
paper, we provide a brief overview before focusing in greater detail on that work most
closely related to ours.

The two characteristics that are most important in distinguishing between the wide
range of different approaches to neuroevolution are (i) what aspect(s) of the neural
network is(are) being optimized, and (ii) how different solutions are represented as
genomes. The different aspects to optimize include

e Connection weights: In most neural networks, the aggregate input to a node is the
weighted sum of all its inputs. The selection of values for the connection weights
is one way to vary the network’s behavior. Evolutionary optimization is one ap-
proach that has long been used for weight selection starting with Montana and
Davis (1989) and Whitley (1989). As described in Section 3.2, the genome used in
this paper has a section for encoding the weights.

e Architecture: Another important factor determining network functionality is how
the nodes are connected. Evolutionary algorithms can be used to optimize the
architecture for particular tasks. Originally, Harp et al. (1989) used them for op-
timizing just feedforward network architectures, but later others such as Stanley
and Miikkulainen (2002) used them for more complex and powerful architectures,
such as recurrent networks.



e Learning rule: Evolutionary algorithms can optimize the method for updating
weights and/or connections. For example, Chalmers (1990) and Baxter (1992)
demonstrated genetic algorithms finding weight update rules that were alterna-
tives to standard rules, such as Hebbian learning and backpropagation.

e Node behavior: Evolutionary algorithms can optimize the functionality of the
nodes. Usually, this involves just picking from a menu of different tranfer func-
tions, e.g. sigmoid or threshold or Gaussian, as done by Hussain (2004). Optimiz-
ing more complex behavior is the primary focus of this paper.

It is now the norm to optimize multiple aspects of the neural network with a single
genetic algorithm. For example, Stanley and Miikkulainen (2002) optimize the archi-
tecture and weights of a recurrent network simultaneously. Abraham (2004) jointly
evolves the architecture, weights, and learning rule. Hussain (2004) optimizes all four
above-mentioned aspects at once.

With regards to the genome representation, an important distinction, although one
that is not always clear-cut, is that between direct encodings and indirect encodings. A
direct encoding is one that explicitly encodes the properties of the neural network that
it is optimizing. Indirect encoding uses a representation where the genome contains
instructions that need to be executed to determine the structure and/or function of
the network. There is a wide variety of approaches to indirect encoding. Some of the
original work on indirect encoding was done by Kitano (1990), who uses a genome
that contains matrix rewriting rules, in what is essentially a grammar-based encoding,
to specify the network structure. The cellular encoding approach invented by Gruau
(1995) uses an instruction tree created by genetic programming to guide how the cells
divide and connect. Cellular encoding introduced the concept of the developmental ap-
proach, where the neural network starts as a single node/cell, known as an embryo,
and grows through a sequence of steps to its full structure. We now discuss a class of
developmental approaches closely related to our work.

2.2 Gene Regulatory Networks (GRNs) for Neuroevolution

The process of growing virtual cellular structures is referred to as artificial embryogeny
(or alternatively, computational embryogeny or morphogenesis), and it is a topic of sig-
nificant recent interest including overviews by Stanley and Miikkulainen (2003) and
Kumar and Bentley (2003). Closely related to our work is a class of such algorithms
referred to by Stanley and Miikkulainen (2003) as cell chemistry approaches. These are
based on abstractions of the cellular processes inside a biological neuron, where the
levels of different biochemicals in a real neuron are equivalent to the values of different
(binary or real-valued) state variables in an artificial neuron. The genes in the genome
specify how to change these states/levels during each time step. The focus of these
approaches tends to be on the development process, and hence network architecture,
not the computation process (as in our work).

An early example of the cell chemistry approach is the work done by Nolfi et al.
(1994), where the state of a neuron is the cell’s axons and their lengths. The genes spec-
ify the branching and positional properties of the neurons, and hence how to grow the
connections between the neurons. This was later enhanced by Cangelosi et al. (1994) to
include cell division and cell migration. Astor and Adami (2000) used a low-level and
detailed model of a cell with the artificial chemicals diffusing according to something
resembling physical laws.

Most of the work in this area uses artificial analogs of gene regulatory networks
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(GRN). In biology, a GRN is a feedback loop involving genes and proteins. The genes
code for the creation of proteins (and indirectly for other types of biochemicals), while
the presence of certain proteins turns the genes on or off. Each gene has two parts, a
regulatory portion and a coding portion. The regulatory portion determines whether
the gene is expressed (i.e., is turned on), while the coding portion creates a particular
protein when the gene is expressed.

Dellaert and Beer (1996) did some of the first work using an abstracted GRN, ap-
plying it to the evolution of dynamical neural networks. All the actions of the neurons,
including communication with other cells, are governed by the presence or absence of
certain proteins in the cell, where each protein is actually just a binary state variable.
A gene is a binary expression that dictates to turn a particular state/protein on or off
based on the values of other states.

The work of Jakobi (1995) is similar to that of Dellaert and Beer (1996) in its use
of GRNs to control the actions of neurons as they form a network, in this case a recur-
rent network. The big difference is that proteins are, like their biological counterparts,
strings of nucleic acids, in this case represented as characters. The regulatory portion
of a gene is based on matching substrings of these proteins.

Bongard (2002) used a GRN encoding as a means to evolve an agent’s brain and
body simultaneously, evolving agents that could locomote in a simulated world. The
states of the GRN are real-valued, which means that the model tracks the concentra-
tion of different “proteins” and not just their presence or absence. Like Bongard (2002),
Eggenberger-Hotz et al. (2002) utilized real-valued concentration levels for the proteins.
There are complex equations governing how these levels change and how the interac-
tions between genes and proteins occur, with each gene containing a set of parameters
that controls the process.

2.3 Dynamic Neuron Models

We now examine other work that uses neurons with internal state. In this case, the
output of a neuron is not simply a function of its current aggregate input. Floreano
et al. (2008) refer to such approaches as dynamic neuron models. Generally, these neuron
models use a single internal state variable with predefined dynamics. (In contrast,
our approach uses multidimensional internal state with the dynamics optimized to the
task.)

One such neuron model is the leaky integrator, which is described by Haykin (1999)
and which is essentially a one-pole low-pass filter. It performs integration, summing
its inputs over time, but old values decay so that the newer inputs are weighted more.
One use for such neurons is in continuous-time recurrent neural networks (CTRNN), as
described by Pearlmutter (1995) and Funahashi and Nakamura (1993). Such networks
are good for estimation of time-variant systems. In addition, Blynel and Floreano (2003)
use CTRNN for the T-maze problem, which as discussed in Section 4.4 is a problem to
which we apply our state-enhanced neural networks.

Another set of dynamic neuron models are those involving spiking neurons (Ger-
stner and Kistler (2002)). There are a large variety of such models, and Izhikevich (2004)
enumerates them systematically. One common spiking neuron model is the integrate-
and-fire neuron, which integrates all its inputs over time until it reaches a threshold, at
which point it outputs a pulse and resets its internal state. The dynamic nature of such
neurons potentially allows networks with such neurons to solve problems that other
networks cannot, as shown by Floreano and Mattiussi (2001). One alternative spiking
neuron model is the Z-model, described by Ichinose et al. (1993).
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Yet another set of dynamic neuron models are those referred to as chaotic neurons.
The state update equation for a neuron is nonlinear and leads to chaotic behavior. Such
neurons have been used for associative memory, e.g. by Aihara et al. (1990) and Osana
et al. (1996).

In some cases, evolutionary algorithms are used to optimize the architecture
and/or weights of networks with dynamic neuron models. Examples of such work
include that by Yamauchi and Beer (1994) and Blynel and Floreano (2003) on evolu-
tionary optimization of CTRNNSs and research by Floreano and Mattiussi (2001) on
evolutionary optimization of spiking neural networks. However, unlike in our work,
these are not optimizing the neuron model, i.e. the dynamic behavior of the nodes, but
rather the structure of the network containing the nodes.

2.4 POMDPs and Recurrent Networks

The experiments described in Section 4 involve partially observable Markov decision pro-
cesses (POMDDPs). These are a class of problems where knowledge of the current state
is not sufficient to solve the problem, and the decision process needs to remember
the past. (Partial observability means that certain aspects of the current state affect-
ing the outcome of the current decision are not observed by the decision maker.) Ab-
erdeen (2003) provides a good general overview of different solution techniques, most
of which fall under the general category of reinforcement learning. We are particularly
interested in the model-free techniques, since they learn to solve the problem with no
a priori knowledge, as we would like to do. Included among these are a variety based
on dynamic programming, such as Q-learning (Watkins and Dayan (1992)), and others
based on hidden Markov models, such as that proposed by McCallum (1993).

The solution techniques of most interest to us are those based on neural networks.
The majority of these use recurrent networks, which can utilize their feedback con-
nections to recirculate values and hence provide simple short-term memory. Indeed,
Funahashi and Nakamura (1993) have shown that continuous-time recurrent neural
networks (CTRNNSs) are universal dynamic approximators, although training methods
to realize the theoretical capabilities of CTRNNs have been difficult to find. A par-
ticularly successful approach to training recurrent network uses evolution to set the
weights and also potentially determine the topology, with examples being the NEAT
method of Stanley and Miikkulainen (2002), ESP method of Gomez and Miikkulainen
(1999), and evolutionary training of CTRNNSs of Blynel and Floreano (2003). Gomez
and Schmidhuber (2005) have demonstrated the use of recurrent networks evolved by
ESP to solve deep-memory POMDPs, i.e. POMDPs that require the decision maker to re-
member far into the past. The problem they solved is the T-maze signal problem with
a long corridor described in Section 4.4. Additionally, Blynel and Floreano (2003) used
CTRNN:Ss to solve the T-maze exploration problem described in Section 4.7.

An alternative neural-network approach is to use hand-designed neural compo-
nents to provide memory. An example is the use of what Hochreiter and Schmidhuber
(1997) refer to as long short-term memory cells as structures separate from the general-
purpose nodes. Gers and Schmidhuber (2001) and Bakker et al. (2003) show that this
technique also can solve deep-memory POMDPs such as the T-maze problem and se-
quence recognition problems. This original work on long short-term memory used
gradient-based methods for training the specialized recurrent networks. In contrast,
Schmidhuber et al. (2007) and Schmidhuber et al. (2005) developed an approach called
Evolino using evolutionary algorithms, among other techniques, for learning the con-
nection weights of these networks. This has improved the performance of the net-
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Figure 1: The internal operation of a node

works, and the technique has proven capable of solving an impressive variety of prob-
lems including the a™b"™c" grammar problem described in Section 4.3. We compare our
work against Evolino and other competitors to the extent possible and practical.

3 State-Enhanced Neural Networks

We now describe the various aspects of our approach, which we refer to as state-
enhanced neural networks.

3.1 The Node and Network Models

The basic network structure we use is like that of standard neural networks. It contains
a set of nodes connected with directional links, with each link having an associated
weight. Each node is either an input node, an output node, or a hidden node. An
input node has no incoming links and has its output value set externally, providing
a way for external stimuli to enter the network. Each non-input (hidden or output)
node computes a weighted sum of the output values on its incoming links and uses
this to compute its output. An output node differs from a hidden node only in being
designated as where to read output from the network.

The difference between our networks and standard neural networks is what hap-
pens internal to a non-input node. For each time step, the node’s internal state is up-
dated according to the state update rules encoded in the genome, and the node’s output
is computed based on the internal state. The internal state variables are real-valued, and
they represent the current state of the node’s computation. There is a specified number,
n, of such state variables (which we henceforth refer to as just states), and hence the
computational state of a node is essentially an n-dimensional real-valued vector. All
but one of these internal states is hidden, i.e not accessible outside the node. Figure 1
illustrates the internal structure supporting a node’s computation.

The input-output state is a special internal state, the only one that is externally acces-
sible. At the beginning of each time step, its value is set to one less than the weighted
sum of the inputs from incoming connections to the node. [Subtracting one from the
weighted sum was found to improve performance in some preliminary experiments
we used to refine the technique. In theory, this adjustment is not necessary, since the
internal dynamics of the node can be arbitrary and hence can compensate for this dif-
ference, as discussed in Section 3.2. In practice, subtracting one makes it easier to find
a solution, similar to the biases in the genetic operators discussed in Section 3.3. We
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Figure 2: The genome contains two sections, a fixed-sized section specifying the con-
nection weights and a variable-sized section specifying the state update rules.

hypothesize this is because it allows the value derived from a single input to have ei-
ther a positive or negative sign despite the input always being positive.] At the end
of each time step, its value is transformed by a sigmoid and used in computing the
value for the node’s outgoing connections. Note that if the state update genes specify
to not change the value of the input-output state, then the computational behavior of
the node is like that of a traditional neural network.

The internal states other than the input-output state are referred to as free internal
states. They provide the memory for the node’s computation process.

There are two nested cycles involved in the dynamic updating of the network. The
outer cycle consists of the values of the input nodes changing to reflect the changes in
the external stimuli of the network. During the inner cycle, the non-input nodes iterate
through the following steps:

1. Set the value for the input-output state to be the weighted sum minus one of the
node’s inputs.

2. Compute updated values for the internal states, including the input-output state,
by following the rules in the state update genes.

The inner cycle is repeated some constant N times for each iteration of the outer cycle,
i.e. each change in the external stimuli. The value of V is currently a hand-selected pa-
rameter, determined partly by the structure of the network. For a feedforward network,
such as all those used in the experiments described below, N should be large enough
to allow the values to propagate forward to the output nodes. In recurrent network, NV
should be large enough to allow the network to settle. Note that there is no guarantee
that a particular recurrent network will settle, but a well-chosen evaluation function
will ensure that those that do not settle will have low fitness and will be eliminated by
the genetic algorithm.

3.2 The Genome

The genome we define has two sections, one specifying the weights for the connections
and the other specifying the state update rules, i.e. internal dynamics. For the purposes
of the work in this paper, we constrain the network to have a fixed feedforward archi-
tecture. So, there are a fixed number of genes in the first section of the genome, where
a gene is a real value specifying the weight for a particular connection.

The section of the genome defining the state update rules has a variable number of
genes. Each state update gene has two parts, a regulator and an action. The regulator
consists of a set of conditions that must all be satisfied before a node can execute the
action (or, in more biological terms, before the gene can be expressed). Note that this
form for a gene is similar to those used for GRN approaches.

The regulator portion can have an arbitrary number (possibly zero) of conditions.
Each condition specifies three values: (i) which state to test, (ii) the minimum value
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Figure 3: This example state update gene specifies to add -0.7*state2 /state4 to state2 if
-1.4<state3<0.8 and 0.4<statel<4.2.

this state can have, and (iii) the maximum value of this state. For the example gene in
Figure 3, there are two conditions. The first condition checks whether state 3 is between
-1.4 and 0.8, while the second tests whether state 1 is between 0.4 and 4.2.

The action portion of a state update gene tells which state to modify and specifies
the function that computes the quantity by which to increment or decrement the state’s
value. The function is specified as a monomial in the internal states, with the coefficient
and exponents given in the genome. The exponents can be either positive or negative.
For the example gene in Figure 3, the state to modify is state 2, the coefficient of the
monomial is specified to be -0.7, and the non-zero exponents are 1 for state 2 and -1
for state 4. Therefore, when the gene is active, -0.7*state2/state4 is one term added to
the old value of state 2 to compute the new value of state 2. If there are additional
active genes (i.e., genes whose conditions are met) specifying how to change state 2,
the different contributions are all added to the value of state 2.

This method of representing state update rules allows specifying the change in the
state per update cycle as an arbitrary polynomial function of the current state. For a
single state variable state ¢, there will be some number n; of active genes specifying a
quantity to add to the value of state i each update cycle. For each such gene, the quan-
tity is a monomial involving all the different state variables. Summing all the quantities
from these genes yields a polynomial. Since there can be an arbitrary number of such
genes each specifying an arbitrary monomial, it is possible to represent an arbitrary
polynomial. While a formal analysis of universality is beyond the scope of this paper,
Taylor series analysis shows that any well-behaved function can be approximated ar-
bitrarily closely by a polynomial, at least in a certain neighborhood. So, this genome
provides great generality in its ability to represent arbitrary state update rules, and
hence arbitrary internal node dynamics.

The regulator portion of the genes provides the ability to change the internal dy-
namics based on the state. This would be most useful when there is a second type
of state variable that remains fixed during the computation process and that indicates
the role of the node. In this scenario, nodes can differentiate based on role, with dif-
ferent nodes using different dynamics all based on the same genome. Regrettably, we
have not yet investigated experimentally inclusion of one or more state variables that
just specify role, so we do not know the effectiveness of the regulator portion for node
differentiation.

While the genome in theory allows representation of nearly arbitrary intenal node
dynamics, it is currently not possible in practice to search this space fully. In the next
subsection, we discuss how the genetic algorithm biases the search to a portion of the
search space where a good solution is more likely. This does raise the question of
whether the genome itself should be more restrictive in the dynamics it can represent
in order to limit the size of the search space.
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3.3 The Genetic Algorithm

We assume that the reader is familiar with a standard genetic algorithm and focus on
those aspects of our genetic algorithm that are noteworthy.

The base genetic algorithm code is a customized version of release 13 of EC]J, which
was originally developed by Luke (2002).

We use a steady-state replacement strategy, generating and replacing a single in-
dividual at a time rather than the whole population. For all the experiments, parent
selection was performed using tournament selection with a tournament size of seven.
Selecting which individual to remove from the population used a tournament of size
ten with the worst of the candidates selected.

We varied the population size for each experiment, with a larger population used
for more difficult searches. Since it is steady-state, there are no generations. Therefore,
the amount of work is measured by the number of evaluations. For reporting purposes,
it is sometimes convenient to convert to pseudo-generations, the number of evaluations
divided by the population size.

Terminating the genetic algorithm was usually done by the human experimenter
after it appeared that the genetic algorithm was converged and not improving its best
solution. The time for the run is reported as the first pseudo-generation at which this
best solution, or an equivalent, was found.

3.3.1 The Genetic Operators

For the experiments discussed below, we used the following set of genetic operators.
The last of these is a crossover (i.e. uses two parents) and the rest are mutations (i.e. use
one parent).

o ChangeWeights mutates the weight value of each connection gene with probabil-
ity 0.8. The mutation adds a random number between -1 and 1 to the weight with
probability 0.2 and multiplies it by a random number between -2 and 2 with prob-
ability 0.8.

o AddStateGene adds a new state update gene and initializes it as described below
in the discussion of the initialization procedure.

o DeleteStateGene randomly selects a state update gene to delete.

o ChangeStateCoeffs selects a new random value for the coefficient of each state up-
date gene with probability 0.4. The new value is obtained by adding a random
value between -4 and 4 to the current value.

o ChangeStateExps selects a new random value for one exponent of each state up-
date gene with probability 0.6. The new value is obtained by setting this exponent
to a random integer between -1 and 1 with probability 0.7, or by adding a random
integer between -2 and +2 to the exponent with probability 0.3.

e ChangeStateConds, for each state update gene with probability 0.7, changes the
range for each condition with probability 0.7. The range is always doubled in size
with equal probability of either extending the bottom or top of the range.

e AddStateConds adds to each state update gene with probability 0.7 a new ran-
domly generated condition.
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o CrossOverStateGenes creates a child that has the same architecture/weight genes
as the first parent and includes each state update gene from each parent with prob-
ability 0.5.

Note that there is a strong bias in the genetic operators for certain parts of the
genome space over others. Most obviously, but not uniquely, ChangeStateExps is bi-
ased strongly towards exponents whose values are -1, 0, or 1. (As we discuss in the next
subsection, the initialization procedure also has a similar bias, particularly towards ex-
ponents being 0.) In practice, this bias helps speed search.

Further note that while these operators were sufficient for the experiments de-
scribed below, there should be much room for improvement, which will be required in
order to solve more difficult problems. One potential shortcoming is that the parame-
ters used in the operators and initialization procedure were chosen arbitrarily and not
optimized in any sense. Another possible place for improvement is that crossover does
not attempt to match homologous genes, which probably degrades performance.

3.3.2 Initialization

For the architecture portion, there are a fixed number of genes, with each gene spec-
ifying the weight for a single connection. These weights are initialized by randomly
selecting for each one a real value from a uniform distribution between -2 and 2.

There are a variable number of state update genes for a genome. To initialize them,
the algorithm first selects the number of such genes randomly from a range, typically
between 3 and 15 inclusive. Each state update gene is then initialized as follows. The
coefficient of the monomial is randomly selected as either 1 or -1. All the exponents of
the monomial are set to 0 except a randomly selected one that is set to 1. (The genetic
operators later introduce more complexity into the monomials. Note, however, that the
operators maintain a bias towards simplicity, and even after manipulation by the oper-
ators the exponents tend to remain 0, or less likely 1 or -1.) The number of conditions is
randomly selected from a geometric distribution whose decay factor is 0.3. Each con-
dition is initialized by randomly selecting a state, plus randomly choosing real values
between -1 and 1 for its upper and lower bounds.

4 Experiments

We now describe a sequence of experiments designed to exercise some of the capabili-
ties of state-enhanced neural networks. Each experiment involves a different partially
observable Markov decision process, or POMDP. In a POMDP, the current observations
of the world do not reveal the full state of the world, i.e. there is hidden state. Since past
observations and decisions provide information about the current hidden state, there
needs to be some way of considering the past to assist with current decisions.

For the experiments, there are two types of POMDP problems. The first is sequence
detection, which requires classification decisions based on observations of sequences of
characters. Such a problem is not a typical POMDDP, since the decisions do not affect the
state of the world, but it still fits the definition of a POMDP because determining the
current state of the sequence requires consideration of past values in the sequence.

The second, and more interesting, type of POMDP environment is a simple virtual
world involving a mouse, some cheese (representing its goal state), and mazes. This en-
vironment consists of a two-dimensional rectangular grid of squares, with each square
either empty, containing a wall, or containing the cheese. The mouse can occupy any
of the empty squares or the goal square, and it points either up, down, left or right.
The mouse senses the contents of three adjacent squares, the one straight ahead and
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Turn left

Figure 4: The control logic maps sensory inputs to control outputs.

the two diagonally ahead. To move through the maze, the mouse can turn left or right
and/or advance one square ahead. When it tries to move ahead, if the square contains
a wall, then the mouse remains in the current square. An external “trainer” can pick up
the mouse and place it back at the beginning of either the same maze or a new maze,
generally after either the mouse has found the cheese or time has expired. The mouse
can sense when such a reset occurs. Note that a reset is different from starting a new
lifetime, i.e. instantiating a new phenotype from the genome. The distinction is that af-
ter the former the mouse retains the same internal states while after the latter the states
are returned to their initial values. The purpose of resets is to test memory, while new
lifetimes test what happens when starting from scratch in different environments.

The mouse’s “brain” contains control logic, implemented as a state-enhanced neu-
ral network, that receives inputs and produces decisions for how to move. Figure 4
shows the inputs to and outputs from the control logic. There are three sensory inputs
telling the contents of the three squares it senses. The value of each of these inputs
is 1 if the contents is a wall, 0 if the square is empty, and -1 if the square is the goal.
A fourth input is 1 when a reset occurs and 0 otherwise. Note that the mouse cannot
sense to its side or behind itself (although with “memory” in the control logic, the ac-
tion can depend on the contents of these squares if they were sensed previously). The
three outputs of the control logic correspond to the three possible actions: turn left, turn
right, and move forward. The mouse performs any of the actions for which the corre-
sponding output is larger than 0.5, first turning and then moving. Hence, the mouse
can potentially turn and move in the same step.

Note that this virtual world is similar to other two-dimensional virtual testing
grounds for machine learning and intelligence. In particular, McCallum (1993) uses a
nearly identical environment of a mouse in a maze searching for cheese for his work on
reinforcement learning. Other similar virtual worlds include Tileworld, described by
Pollack and Ringuette (1990), and Wumpus World, originally proposed by Genesereth
and described by Russel and Norvig (1995).

The following is a brief summary of the problems used in the experiments:

1. Majority-Ones: The objective is to determine whether there are more ones than ze-
roes in a sequence to the current point. This relatively simple sequence detection
problem is one for which we can analyze the internal functionality of the resulting
state-enhanced neural network and how it uses internal state.

2. N-in-a-Row: The objective is to determine whether there are N (where N is 2 or 3)
1’s in a row anywhere in a sequence. This is another case where we can understand
and analyze the resulting network’s behavior. (Such analysis is too difficult for the
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other problems.)

3. a™b"c™ Grammar: The objective is to tell the next legal terms in a sequence consisting
of n a’s followed by n b’s and n ¢’s. It was introduced by Schmidhuber et al. (2007)
as a difficult problem to showcase Evolino, and hence is a good existing benchmark
for comparison.

4. T-Maze Signal: An agent (robot or mouse) is given a signal at the start of a long cor-
ridor to determine which way to turn at the end of the corridor. Originally used for
deep-memory learning by Jakobi (1998), it was later used by Gomez and Schmidhu-
ber (2005) to demonstrate that ESP can remember the signal for an arbitrarily long
time, and is hence another good benchmark for comparison.

5. T-Maze Signal Plus Counting: In this new extension of the T-maze problem, the agent
does not turn immediately at the end of the corridor but rather is released into open
space and must count N steps before turning. Forcing the agent to both count and
recall the direction to turn increases the problem difficulty.

6. Many-Branch Maze: An agent must as efficiently as possible explore a maze with
ten side branches off a main corridor to find the cheese/goal in one of them. This
problem requires more complex search logic for the agent than does the T-maze.

7. T-Maze Exploration: Although this problem uses the same basic maze geometry as
the T-Maze signal problem, it is different in concept. The agent must explore both
possible cheese locations on its first attempt, and must “remember” the discovered
location in order to navigate directly to it on subsequent attempts. This is a bench-
mark used by Blynel and Floreano (2003) for demonstrating evolutionary training of
a CTRNN, albeit with a real robot rather than only a simulation.

8. Double-T-Maze Exploration: This is the same basic problem as the T-maze explo-
ration problem but with more complex geometry. Blynel and Floreano (2003) pre-
sented this as a problem not fully solvable by their CTRNN approach, so we can use
it to a limited extent to demonstrate the improvements provided by our approach,
with the caveat that the CTRNN was applied to a real robot rather than a simulation.

9. 3-Branch Exploration: This is like the previous two exploration problems, except
with three instead of two possible locations for the cheese in three different corridors.
The need to remember three possible locations and act differently on each possibility
increases the problem difficulty.

We now discuss the individual experiments. For each, we provide a more de-
tailed definition of the problem, the evaluation function used by the genetic algorithm,
the values of the problem-specific genetic algorithm parameters, and the results and
conclusions. For the problems where there are existing results obtained by other tech-
niques, we compare our results to the competing ones. At the end of this section de-
scribing the experiments, Table 1 summarizes the results.

4.1 Majority-Ones Experiment
41.1 Problem Definition

This is a sequence detection problem. The input is a sequence of an arbitrary number of
zeroes and ones at the single input node of the network. At the end, the output should
be one if there were more ones than zeroes in the sequence and zero if there were more
zeroes than ones.

The obvious algorithmic solution to the problem is to use a counter to keep track
of the difference between the number of ones and the number of zeroes observed so far.
The counter is initialized to zero, and is incremented for each one observed and decre-
mented for each zero. If the counter is positive (negative) at the end, then there were
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a majority of ones (zeroes). Machine learning algorithms that can naturally represent a
counter (such as genetic programming with the right primitives) can find this exact so-
lution, while other algorithms (such as ours) need to improvise something equivalent.

4.1.2 Evaluation Function

For the training set, we selected 500 different random sequences of binary values, 250
with a majority of ones and 250 with a majority of zeroes. For the first 400 of these
sequences (200 of each type), we selected the length of each sequence to be a random
value between 5 and 21 inclusive. For the next 100 sequences, we chose the length
of each sequence to be a random value between 100 and 200. We included a large
number of training exemplars to ensure generality. We chose a few to be moderately
long sequences to ensure that the evolved solution works for longer sequences.

The test set contained 920 different sequences. The first 500 were chosen from the
same distributions of sequence lengths as used for the training set. The next 400 were
chosen to have random sequence lengths between 5 and 210. The final 20 had sequence
lengths between 5000 and 6000. These very long sequences served to test how well the
solutions generalize for test sequences much longer than the training sequences.

For a single sequence of inputs and the corresponding desired output, the error
measure is defined as

e+9ife>06
fle)=1< e+2ife>02 (1)
e otherwise

where e is the absolute value of the difference of the desired output and the actual
output. The overall score of a network is

Nt
> fle:) +0.1N, )
=1

where ¢; is the error in the final output for sequence i, Ny is the number of training
exemplars (in this case 500), and IV, is the number of state update genes. The term
involving N; is included to encourage parsimony in the genome, i.e. to favor genomes
with less state update genes.

4.1.3 Parameter Values

We used two different configurations corresponding to two different neural network
architectures. The first was similar to the configuration used for the mouse-in-maze
problems described below, employing hidden nodes and a multilayer network archi-
tecture. The second used a minimal network with a single input node directly con-
nected to a single output node. The former is a more typical configuration and served
as a good first test before proceeding to the more difficult problems. The latter yielded
solutions that were easier to analyze and understand, hence providing insight into how
our approach works.

For the first configuration, the population size is 2000. The network architecture is
fixed with four hidden nodes, fully connected feedforward with no direct connection
between the single input and single output node. So, there are eight weights and eight
corresponding genes for the weights. There are four internal states including the input-
output state, and therefore three free internal states. For each new input, the network is
allowed two update cycles for the state changes to propagate both between nodes and
within nodes, plus three extra update cycles at the end before making a final decision.
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Figure 5: The genome for a sample solution to the majority-ones problem contains one
weight gene and three state update genes.

For the second configuration, the population size is 5000. (Despite a simpler net-
work architecture and solution, it is harder for the genetic algorithm to find an optimal
solution, so a larger population is required than for the first configuration.) With only
a single connection between the input and output nodes, only a single weight needs to
be specified. There are still two update cycles per input, but only one extra cycle at the
end.

Note that in this and all the other experiments there was no attempt to find the best
parameters, instead using the first set of parameters that worked reasonably well. Usu-
ally this meant using the same parameters as for the last experiment and only changing
them if a good solution was not found.

4.1.4 Results

For this experiment (and all the others), the genetic algorithm was executed ten times
for each configuration. This provides a statistical sampling of performance plus evi-
dence that any successes are repeatable.

For the first configuration, all ten times the genetic algorithm found a solution that
was correct on all 500 training sequences. It required a median and a mean of approx-
imately 6.5 pseudo-generations, or 13,000 evaluations. For seven of the runs, the best
individual had three state update genes and an evaluation of 0.3. For the other three
runs, the best individual had four state update genes and an evaluation of 0.4. (These
were cases of the population converging to a slightly suboptimal solution and not hav-
ing the diversity to escape the local minimum.) To test generalization, the optimal
network from each run was executed on the test set, and nine out of the ten correctly
classified all sequences in the test set. The only test case missed by the tenth was a
sequence much longer than those in the training set.

For the second configuration, nine out of ten times the genetic algorithm found a
solution that was correct on all training sequences. The nine successful runs required a
median and a mean of approximately 40,000 and 47,000 evaluations (or equivalently, 8
and 9.4 pseudo-generations) repectively. All nine runs found solutions with three state
update genes. Of the nine best-of-run networks, one correctly classified all sequences in
the test set; the other eight misclassified just one test sequence, with this one sequence
always being one of the very long sequences.

We draw a few general conclusions from these results. The searches were com-
paratively quick, which implies that this is a relatively easy problem for this approach.
Using hidden nodes actually made the search faster, although as we see in the next
experiment, this is not always the case. The genomes/networks found by the genetic
algorithm can only be expected to classify correctly with certainty those test cases with
sequence lengths within the same range as the sequence lengths for the training set.
We will see what causes an occasional failure for longer sequences in the upcoming
analysis of the solutions.

Examination of the optimal solutions found for the second configuration (the one
with no hidden nodes) shows the same basic solution repeatedly in slightly different
forms. The typical solution has a genome that looks like that shown in Figure 5, where
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(4, Cy and Cj are constants such that C;Cy; > 0 and C3 =~ 2. The state update genes
from this genome specify state update rules given by the equations

(SO)new = CVl(sl)old (sl)new = (Sl)old + C‘2(50)0ld (3)

where s is state 0, the input-output state, and s; is the first free internal state. Note
that these state update rules use only one of the free internal states and ignore the other
two (with state 1 arbitrarily chosen as the one to use).

Analysis shows that s; acts equivalently to the counter discussed in the problem
description. When the input to the network is 1, the input-output state is set to sg =
C3 — 1 = 1; when the input is 0, sy = —1. Hence, s, is incremented by approximately
C if the input is 1 and incremented by —C if the input is 0. Since there are two update
cycles per sequence element, the increment quantities are approximately 2C5 and —2C5
per sequence element. The final output is computed after one additional cycle during
which sg is set to Cys;. Since C;C; is positive, the final value of sy will be positive
if the sequence contained a majority of ones and negative if it contained a majority of
zeroes. The sigmoid transforms these values of sy to produce outputs of one and zero
repectively.

This analysis of the solution provide an understanding of the occasional failure
on very long sequences. If C3 = 2 exactly, then s; exactly implements a counter, but
with C3 # 2, there is a slowly accumulating error proportional to |C3 — 2|. In a long
sequence that contains almost the same number of ones and zeroes, the accumulated
error can become larger than the difference in the counts. In fact, the single solution
that classified all the test cases correctly had C3 = 2.003, while for all other solutions
|C3 — 2| > 0.004. Including very long sequences in the training set would fix this
problem.

4.2 N-In-A-Row Experiment
421 Problem Definition

Like the majority-ones problem, the N-in-a-row problem involves detection of a pattern
in a temporal sequence. In this case, the pattern is a subsequence of N consecutive ones,
where N is some integer. If there are N consecutive ones anywhere in the sequence, the
output at the end of the sequence should be one; otherwise, the output should be zero.
We perform the experiment first for the case when N=2 and then for the harder case of
N=3.

As for the majority-ones problem, there exists a simple algorithmic solution using
a counter. Initialize the counter to be zero. For each sequence element that is one,
increment the counter by one. For each zero, if the counter is currently less than N,
reset the counter to zero, and otherwise, do nothing. At the end, if the counter is at
least N, then there were N consecutive ones in the sequence. We will see that our
approach evolves an analogous solution using node internal state.

4.2.2 Evaluation Function

For N=2, the training set contains 402 different sequences. The first 400 are randomly
selected sequences whose lengths vary between 5 and 21. We ensure that half of these
are positive exemplars, i.e. have two ones in a row, and half are negative exemplars. The
final two exemplars are sequences of length 5000 included to ensure that the evolved
network works for longer sequences. The negative exemplar consists of 5000 alternat-
ing ones and zeroes, while the positive exemplar is the same as the negative except
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somewhere in the middle a one is swapped with its immediately preceding zero, mak-
ing two ones followed by two zeroes. The test set contains 802 exemplars. Like the
training set, the first 400 exemplars have sequence length between 5 and 21; the next
two exemplars are like the long sequences in the training set except with the swap in
a different position; the final 400 are randomly generated sequences with lengths be-
tween 5 and 50.

For N=3, we were less thorough about training for and testing long sequences
than for N=2. The training set contained 400 exemplars with sequence lengths between
5 and 21. The test set had the same distribution of exemplars.

The fitness score for a genome/individual is as given in Equation 2, and is the
same as for the majority-ones problem.

4.2.3 Parameter Values

The parameter values are almost identical to the ones used for the majority-ones exper-
iment. For both N=2 and N=3, we used two different configurations, one with hidden
nodes and the other without them. The one parameter that we changed was the popu-
lation size, with the more challenging search problems requiring a larger population to
find the optimal solution reliably. For N=2, we used a population size of 5000 for both
configurations. For N=3, the population sizes were 20,000 without hidden nodes and
50,000 with hidden nodes.

4.2.4 Results

There are four different sets of results.

For N=2 and no hidden nodes, all ten genetic algorithm runs produced a correct
solution (i.e. a solution perfect on the training set). They required a median of about
67,000 evaluations and mean of about 75,000 evaluations to find a correct solution, and
longer to compress the number of genes in the genome for a more parsimonious solu-
tion. The best solution discovered had only four genes.

For N=2 with hidden nodes, all ten runs produced a correct solution. They re-
quired a median and mean of about 60,000 and 63,000 evaluations respectively. The
smallest, and therefore best, solution had four genes.

For N=3 and no hidden nodes, eight of the ten genetic algorithm runs produced a
correct solution, requiring a median and mean of about 330,000 and 350,000 evaluations
respectively. The best solution had four genes.

For N=3 with hidden nodes, all ten genetic algorithm runs produced a correct
solution, requiring a median and mean of about 850,000 evaluations. The best solution
had five genes.

All best-of-run genomes performed perfectly on their corresponding test sets.

These results indicate that the N-in-a-row problem is more difficult for our ap-
proach than the majority-ones problem. Furthermore, the use of hidden nodes only
made the search more difficult for the case N=3. A possible problem is the homogene-
ity of the state update rules; forcing all nodes to use the same rules eliminates much of
the potential power of a multinode network.

As for the majority-ones problem, the solution when there are no hidden nodes is
accessible to humans and instructive to analyze. For N=2, the most compact (in terms
of the number of state update genes) of the evolved solutions again uses only one of
the free internal states, ignoring the other two. (Other solutions use more of the free
internal states.) The equations for the state update rules are

(So)new = 7~03(50)old - 8-09(51)01(1 (51)new = _0~34(50)old + (Sl)iew (4)
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and the single weight is 2.65. Note that setting (s1)new equal to (s1 )f;l 4 means that s; will
tend to decay to 0 when |s1]| < 1 but will grow rapidly when |s;]| > 1. So, having |s]
grow bigger than one acts like a switch after which s; will remain negative if s; < —1
and remain positive if s; > 1. When the input is 0, s = —1, and when the inputis 1,
so = 1.65. Hence, an input of 1 pushes sy quicker to -1 than an input of 0 pushes it to
+1. The constants are calibrated so that it only requires two 1’s to flip the switch but
many more 0’s. Many zeroes in a row will fool it, so again we would need to include
in the training set sequences with many consecutive zeroes to ensure that the solution
can handle this case.
A similar type of solution is evolved for N=3 with state update rules given by

(S())new = _4~45(50)old(31)0ld —5.87 (Sl)new = 0'89(50)0ld(51)ild —0.47 (5)
and a weight of 2.1.

4.3 a"b"c” Grammar Experiment
43.1 Problem Definition

The a"b"c™ grammar problem is a difficult sequence detection problem introduced by
Schmidhuber et al. (2007). It provided a way to demonstrate the power of the Evolino
technique, since the problem was beyond the capabilities of neural-network techniques
other than Evolino and its predecessor, LSTM.

The problem is based on a simple grammar involving five letters: a, b, ¢, sand ¢t. A
legal sequence in this grammar starts with s, then has n a’s, n b’s, n ¢’s, and concludes
with a t, where n is any non-negative integer. Examples of legal sequences are st, sabct,
and saaabbbccect. The objective for the neural network is, at any point in the sequence,
to tell which letters are legal to occur next. For instance, if the sequence so far is saa,
then the possible next letters are ¢ and b.

This problem is difficult for a neural network because it requires keeping count of
the number of a’s as they are added to the sequence and using this count to determine
when b’s should transition to ¢’s and then when ¢’s should transition to the final ¢.

4.3.2 Evaluation Function

We define there to be four inputs and four outputs. There is an input corresponding to
each of the letters s, a, b and ¢, with the input high if that letter is the current term in
the sequence and low otherwise. (Since ¢ is always the last term, it is never an input to
predict the next term.) There is an output corresponding to each of the letters ¢, a, b and
¢, with the correct output high if that letter is legal as the next term in the sequence and
low otherwise. (Since s is always the first term, it is never a legal next term..)

We use eleven training cases, one for each n between 0 and 10 inclusive. For each
training case, there are 3n + 2 terms in the sequence and hence 3n + 1 different steps
after which to determine the possible next terms. The evaluation function is the sum
of two separate subscores, one for all the desired outputs equal to 0 and the other for
all the desired outputs equal to 1. We separate these subscores because there are many
more 0 outputs than 1 outputs, and we do not want to reward always selecting a 0.
Each subscore is computed according to Equation 2.

4.3.3 Parameter Values

We used a network architecture with four hidden nodes. The nodes had two internal
states. The population size was 20000.
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Figure 6: This is the geometry of the maze for the problems in Sections 4.4 and 4.5. For
the former, N=0, K=1 and M=5; for the latter, N=3, K=7 and M=9.

4.3.4 Results

Of all the problems investigated, this was the most difficult one for the search algorithm
to find a solution. Of the ten genetic algorithm runs, only one produced a solution that
solved all ten test cases correctly. This run required 115 pseudo-generations, which is
roughly 2.3 million evaluations. The solution it found had five state update genes.

There was no generalization to exemplars that were not part of the training set,
i.e. the evolved solution was not correct for n > 10. Evolino had far superior gener-
alization, as it was able to find a solution that generalized to n = 53. This presents
a clear future challenge to improve the generalization capability of our approach on
sequence detection problems. However, the problems of greater interest to us are the
mouse-in-maze problems, since they are more along the path towards our ultimate goal
of adaptive physical agents. We now examine a set of experiments involving this type
of problem.

4.4 T-Maze Signal Experiment
4.4.1 Problem Definition

The T-maze signal problem has been previously used by multiple researchers, includ-
ing Jakobi (1998), Bakker et al. (2003) and Gomez and Schmidhuber (2005), to investi-
gate reinforcement learning with memory. Hence, it provides a comparison with pre-
vious approaches.

The maze consists of a long corridor with the agent (for us, a mouse) starting at
one end and a Tunction at the other end. When the mouse reaches the T-junction, it
must turn either right or left to reach the goal/cheese. The information about which
direction to turn is provided at the start of the corridor by some type of signal, which
we have implemented as a gap in the wall on the side to which the mouse should turn.
The control algorithm needs to learn to recognize the significance of the signal and to
remember it for the entire length of the corridor.

Figure 6 illustrates a generalized version of this maze geometry that covers the
T-maze-with-counting problem as well as this one. For this problem, N=0, K=1 and
M=5, which means that there is no choice besides turning left or right at the end of
the corridor. The length of the corridor, L, can vary, and ideally the control algorithm
should work for any length L. Note that in Figure 6, the gap and the cheese are both
to the mouse’s left, but the control law must also handle the case when both are on the
right.
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4.4.2 Evaluation Function

The training set consists of six different mazes, three with the goal on the left and three
symmetric cases with the goal on the right. The three different values for the corridor
length, L, are 5, 15, and 30.

For each maze in the training set, the mouse starts at the beginning and goes until
it either reaches the cheese or takes the maximum number of steps, which we set to 40.
The penalty incurred by the mouse navigating a maze is the sum of the following four
terms

e the total number of steps the mouse takes
o the number of times it attempts to walk into a wall
e a fixed value, in this case 30, if it does not find the cheese
e the number of steps it is from the cheese at the end
The overall score is the sum of the penalties for each of the six test cases.

4.4.3 Parameter Values

The configuration is similar to those used with hidden nodes for the majority-ones and
N-in-a-row problems with the following differences. The population size is 20,000,
there are five hidden nodes (rather than four) in the fixed network architecture, and
there are two available free internal states (rather than three).

4.4.4 Results

There are two definitions of success. One is that the mouse reaches its goal in all test
cases before time expires. The second, more stringent, definition is that the solution is
optimal, i.e. it takes the minimum number of steps to reach its goal in all test cases. An
optimal solution cannot waste a single move; for example, it must be able to turn and
move in the same time step at the end of the corridor (as opposed to using one step to
turn and the next to move).

Nine out of ten genetic algorithm runs found a solution that reached all the goals,
and seven out of ten found solutions that were optimal on the training set. The seven
runs required a median of 240,000 evaluations and mean of 320,000 to reach optimal
solutions. The most compact solution had three state update genes.

We tested the seven optimal solutions for a corridor of length 10,000 (i.e. L=10000),
which is much longer than any of the training cases. All seven solutions performed op-
timally in this case also, hence demonstrating generalization to corridors of far greater
length and the ability to remember the initial signal for very long times. Gomez and
Schmidhuber (2005) showed that ESP, like our approach but unlike other recurrent neu-
ral networks, could remember the signal for very long times. Therefore, our approach
provides performance equivalent to the best of its competitors.

4.5 T-Maze Signal with Counting Experiment
4.5.1 Problem Definition

This problem is an extension of the T-maze signal problem that is more difficult. It
requires the agent/mouse not only to remember to which side the signal indicated to
turn but also to count the number of steps after the end of the corridor before turning.
We have invented this problem to highlight the enhanced capabilities of our approach.

As shown in Figure 6, when K >> 1, the mouse does not run into a wall at the end
of the corridor but is instead released into open space. The goal state can be reach by
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Figure 7: In the many-branch problem, the goal is in one of the ten side corridors not
adjacent to the starting position. It is always three steps from the main corridor.

proceeding N steps beyond the end of the corridor and then turning to the side of the
signal. When N>1, this requires counting the number of steps beyond the end before
turning. For any given instance of the problem, N is fixed, as is M and K. For this
experiment, we used N=3, K=7 and M=9. An optimal solution to the problem requires
the mouse to remember both the side of the signal at the beginning of the corridor and
the number of steps taken beyond the end of the corridor.

4.5.2 Evaluation Function

The training instances are the equivalent six mazes as for the T-maze signal problem
described in Section 4.4. The penalty function is also the same. The maximum number
of steps is raised to 50.

4.5.3 Parameter Values

The parameters are the same as for the T-maze signal problem except that the popula-
tion size is now 50,000.

4.5.4 Results

Ten out of ten runs found a solution that reached all the goals, and eight out of ten found
an optimal solution. For a corridor of length 10,000, seven of the eight performed opti-
mally in this case also, hence displaying good generalization. The eight runs required
a median and mean of 1,250,000 evaluations to reach solutions that were optimal. The
most compact solution had three state update genes.

4.6 Many-Branch Experiment
4.6.1 Problem Definition

As shown in Figure 7, the maze consists of a main corridor with ten different passage-
ways branching off of it. The cheese can be in any of the ten side passages. Each side
passage is six steps deep (unlike in the figure that shows them only four steps deep),
with the cheese always exactly three steps in. Since the mouse can determine whether
the cheese is in a passageway after two steps, an efficient search should not continue to
the end of each side passage but rather turn around after two steps if the cheese is not
there. Note that this problem requires a simple maze search strategy combined with
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Figure 8: In the T-maze exploration problem, the objective is to discover the cheese lo-
cation on the first attempt and to remember and utilize this information on subsequent
attempts.

the ability to count steps and act accordingly. Hence, it provides a test of the ability to
evolve moderately complex behaviors.

4.6.2 Evaluation Function

There are ten test cases, each with the cheese in a different side passage. The score is
computed the same as for the T-maze signal problems, except the maximum number
of steps is 110. To reach the goal in each of the test cases within 110 steps requires a
search strategy that only enters partway into each side passage, thus providing strong
incentive to find such a strategy.

4.6.3 Parameter Values
The setup is the same as the T-maze signal problems, with a population size of 50,000.

4.6.4 Results

In nine of the ten runs, the discovered solution could find the cheese in any of the ten
possible locations, checking each passageway and turning around if it did not detect
the cheese after two steps. None of the solutions were fully optimal, as all explored
either clockwise or counter-clockwise rather than checking the passageways on both
the left and right as proceeding down the main corridor. However, all nine of the
solutions were optimal in the sense of wasting no steps in the process of turning and
moving. This is actually tricky; e.g., to turn around, the mouse’s first step must be just
a left or right turn (a move forward draws a penalty for hitting wall) and the next step
a combination of a turn and a move. The nine successful runs required a median of
700,000 evaluations and mean of 800,000 evaluations to find their solutions.

4.7 T-Maze Exploration Experiment
4.7.1 Problem Definition

The T-maze exploration problem was utilized by Blynel and Floreano (2003) to vali-
date their use of an evolutionary algorithm for training CTRNN:S. It tests the ability of
the approach to find a control algorithm that adapts its behavior based on knowledge
gained about the maze. Blynel and Floreano (2003) used a real robot in their work,
while our work uses a simulation, so the results are not fully comparable. (The noise
of real sensors and actuators in general makes the control of a real robot more difficult
than the control of a simulated one.)
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Figure 9: While the double T-maze presents a more complex geometry than the simple
T-maze, the exploration problem is the same.

The maze geometry differs from that of the T-maze signal problem in that there is
no signal at the beginning of the corridor and the corridor is shorter. The agent/mouse
performs three attempts at navigating the maze, and the cheese is placed in the same
location for each attempt. This location can be in either of two possible spots, one in
each branch. On the first attempt, the mouse should find the cheese whether it is in
the left or right branch. On subsequent attempts, the mouse should go directly to the
cheese based on its “memory” of what occurred in the first attempt. This is illustrated
in Figure 8.

4.7.2 Evaluation Function

There are two test cases, one for each possible location of cheese. For each test case,
there are three successive attempts to find the cheese. The first two attempts are al-
lowed a maximum of 20 steps The third attempt is allowed a maximum of 10 steps,
which prevents the mouse from doing any exploration on this attempt. The score is
computed the same as for the other maze problems.

4.7.3 Parameter Values

The parameter values are the same as for the other maze problems, with a population
size of 50,000.

4.7.4 Results

In all ten genetic algorithm runs, the discovered solution was essentially correct, i.e.
it found the cheese on all three attempts for both test cases. In six of the ten runs,
the solution was optimal in that there were no wasted movements. In the other four
cases, on the first attempt if the cheese was not in the first branch explored, the mouse
would go to the end of the branch before turning around rather than turning around
as soon as it did not detect the cheese. The optimal runs required a median of 1,500,000
evaluations and a mean of 1,900,000 evaluations.
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4.8 Double-T-Maze Exploration Experiment
4.8.1 Problem Definition

The double-T-maze exploration problem was proposed by Blynel and Floreano (2003)
as a more difficult version of the T-maze exploration problem to provide a greater chal-
lenge to their CTRNN technique and others. Their CTRNN approach could not fully
solve the problem, so it is a good one for demonstrating the benefits of state-enhanced
neural networks. As for the T-maze exploration problem, Blynel and Floreano (2003)
used a real robot rather than a simulation, which usually makes the problem more
difficult; therefore, this should not be considered a head-to-head comparison between
CTRNN and our approach.

As in the simple T-maze exploration problem, there are two possible locations for
the goal/cheese. The agent/mouse must check both these locations on the first attempt
and then use this information to go directly to cheese on subsequent attempts. The
difference is that the geometry of the double T-maze, which is pictured in Figure 9,
is more difficult to navigate. It requires multiple turns to travel between the starting
location and either potential cheese location, as well as between the two possible cheese
locations.

When seeded with a solution to the simple T-maze, the evolutionary seach algo-
rithm of Blynel and Floreano (2003) could find a CTRNN that could find the goal loca-
tion in all but one case. If the goal location was not the possible location explored first
during its first attempt, it could not navigate to the second location.

4.8.2 Evaluation Function

The evaluation function is the same as for the T-maze exploration problem except that
the maximum steps allowed are 35 for the first attempt and 15 for subsequent attempts.

4.8.3 Parameter Values

The parameter values are the same as for the simple T-maze exploration problem, in-
cluding the population size of 50,000.

4.8.4 Results

In eight of the ten genetic algorithm runs, the discovered solution was essentially cor-
rect. None of the solutions was optimal in that there was always some small wasted
movements, usually on the first attempt proceeding to the end of the first corridor
rather than immediately turning around at the the point when the cheese is clearly not
present. The runs yielding correct solutions required a median of 2,750,000 evaluations
and a mean of 3,000,000 evaluations.

Unlike CTRNN, our state-enhanced neural network approach consistently discov-
ers a solution that can find the cheese on all three attempts whether the cheese is in
the left or the right branch. (We reiterate the caveat that CTRNN was used with a real
robot and our approach with a simulated robot.) In particular, on the first attempt, if the
cheese is not in the first location explored, the control algorithm can navigate efficiently
from the first possible location to the second.

4.9 3-Branch Exploration Experiment

4.9.1 Problem Definition

This is a problem that we have invented that is similar to the T-maze exploration prob-
lem but adds an extra level of difficulty. Instead of two possible locations for the
goal/cheese, there are three possible locations in three different branches, as shown
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Figure 10: The 3-branch exploration problem differs from the other exploration prob-
lems in that there are three possible locations for the cheese instead of just two.

in Figure 10. The agent/mouse must explore the three possible locations for the cheese
on its first attempt and proceed directly to the right location on subsequent attempts.

4.9.2 Evaluation Function

There are three test cases, each with the cheese in a different location. The score is
computed the same as for the previous exploration problems, with three attempts eval-
uated for each test case. The maximum number of steps is 30 on the first attempt and 7
on the other two attempts.

4.9.3 Parameter Values

The parameter values are the same as for the T-maze exploration problems, including
the population size of 50,000.

4.9.4 Results

In seven of the ten genetic algorithm runs, the discovered solution was essentially cor-
rect, finding the cheese in any of the three locations on the first attempt and proceeding
to the cheese without testing the other two possible locations in the next two attempts.
None of the solutions was optimal in that there were no wasted movements. The runs
yielding correct solutions required a median of 2,500,000 evaluations and a mean of
2,800,000 evaluations.

5 Conclusion and Future Work

In this paper, we examined a new type of neural network, a state-enhanced neural net-
work, whose nodes possess multidimensional internal state with selectable and poten-
tially complex internal dynamics. Providing state for the nodes” computation process
allows the nodes to use memory of the past in their current computations. We demon-
strated that an evolutionary algorithm can find a genome specifying internal dynamics
as a set of state update rules that are suited for a particular task and/or environment.
Furthermore, we showed how this approach achieves performance on a suite of
deep-memory POMDPs comparable to that of the best current neural network solu-
tions. Our technique solved three benchmarks designed to showcase three of the best
neural network approaches, as well as a fourth, previously unsolved benchmark. We
also introduced three new mouse-in-maze POMDP problems designed to further chal-
lenge this class of techniques and showed that our approach could solve these also.
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Problem Name Population | Evaluations | Correct | Optimal
Majority-Ones 2,000 13,000 10 9
2-in-a-Row 5,000 63,000 10 10
3-in-a-Row 50,000 850,000 10 10
a™b" ¢ Grammar 20,000 2,300,000 10 0
T-Maze Signal 20,000 320,000 9 7
T-Maze Signal Plus Counting 50,000 1,250,000 10 7
Many-Branch Maze 50,000 800,000 9 0
T-Maze Exploration 50,000 1,900,000 10 6
Double-T-Maze Exploration 50,000 3,000,000 8 0
3-Branch Exploration 50,000 2,800,000 7 0

Table 1: This is a simple summary of the parameters and results of the experiments.
There were ten genetic algorithm runs performed for each problem. The evaluations
column contains the mean number of individuals evaluated before convergence to a
correct solution. The correct column contains (a) for sequence detection problems, the
number of runs yielding solutions correct on the entire training set and (b) for mouse-
in-maze problems, the number that correctly solved the maze within the time limits.
The optimal column contains (a) for sequence detection problems, the number or runs
producing a solution correct on the entire test set and (b) for mouse-in-maze problems,
the number with no wasted movements and which, where applicable, generalized to
new mazes correctly.

Indeed, the aggregation of a broad set of problems that could serve as a standard to
evaluate deep-memory learning techniques is a secondary achievement of our work, in
addition to the primary achievement of developing a new technique and demonstrat-
ing some of its capabilities.

While this work represents progress, it is still just preliminary, with a variety of
ways to potentially expand its power. One possible enhancement is allowing hetero-
geneity among the nodes with respect to internal dynamics, and hence node functional-
ity. In biological organisms, all cells have the same genome; heterogeneity results from
different cells expressing different genes. The same could be the case in state-enhanced
neural networks if the position/role of a node were represented as an internal state (or
set of states) and this state could be used in the regulator portion of genes.

A more distant goal is to include in the genome genes controlling the network
architecture and learning algorithm, such as those from the GRN work described in
Section 2.2. Such an enhanced genome would allow the simultaneous evolution of
network structure, node functionality, and weight adjustment technique, as discussed
by Montana et al. (2006). Furthermore, there could be coupling between the states, so
architectural state could drive computation and learning and vice versa. In practice,
the difficulty is that an enhanced genome would result in a very large search space.
We would need to find better approaches to searching this space, with one possible im-
provement being to build on already known solutions rather than starting from scratch
each time (as advocated by D’Silva et al. (2005) in a different context).
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