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1 Introduction

Neural networks are a computational paradigm modeled on the human brain that has become popular in
recent years for a few reasons. First, despite their simple structure, they provide very general computational
capabilities [HORNS9]. Second, they can be manufactured directly in VLSI hardware and hence provide
the potential for relatively inexpensive massive parallelism [MEADS89]. Most importantly, they can adapt
themselves to different tasks, i.e. learn, solely by selection of numerical “weights”. How to select these
weights is a key issue in the use of neural networks. The usual approach is to derive a special-purpose
weight selection algorithm for each neural network architecture. Here, we dicuss a different approach.

Genetic algorithms are a class of search algorithms modeled on the process of natural evolution. They
have been shown in practice to be very effective at function optimization, efficiently searching large and
complex (multimodal, discontinuous, etc.) spaces to find nearly global optima. The search space associated
with a neural network weight selection problem is just such a space. In this chapter, we investigate the
utilization of genetic algorithms for neural network weight selection.

2 Overview of the Technologies Involved
2.1 Neural Networks
Neural networks generally consist of five components

1. A directed graph known as the network topology whose nodes represent the neurodes (or processing
elements) and whose arcs represent the connections

2. A state variable associated with each neurode
3. A real-valued weight associated with each connection
4. A real-valued bias associated with each neurode

5. A transfer function f for each neurode such that the state of the neurode is f(Xw;z; — [3), where (3
is the bias of the neurode, w; are the weights on the incoming connections, x; are the states of the
neurodes on the other end of these connections.

To execute a neural network, one must initialize it by setting the states of a subset of its neurodes.
In particular, all the input neurodes, i.e. those neurodes which have no incoming connections, must have
their states set at initialization. Then, at successive time ticks (or continuously in the case of analog
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Figure 1: The mutation and crossover operators.

networks), each neurode updates its state as computed by its transfer function based on the states of the
other neurodes feeding into this one. After enough time ticks that the network has reached steady-state
(i.e., the neurode states have stopped changing significantly), the states of a chosen subset of the neurodes
are the network’s output. In particular, the state of any output neurode, i.e. a neurode with no outgoing
connections, is part of the network output (or else superfluous).

A feedforward neural network is one whose topology has no closed paths. To execute a feedforward
network, the states of the input neurodes are set. After n time ticks, where n is the maximum path length
from an input neurode to an output neurode, all the neurodes have assumed their steady-state values. Note
that the computation from each of these n times ticks can be performed in parallel, and hence feedforward
neural networks execute very quickly when fully parallelize.

As mentioned above, many networks are able to adapt to the data, i.e. learn. In most cases, this requires
a separate stage called “training”. During training, the network topology and/or the weights and/or the
biases and/or the transfer functions are selected based on some training data. In many approaches, the
topology and transfer functions are held fixed, and the space of possible networks is spanned by all possible
values of the weights and biases. It is this problem of weight selection which we discuss in this chapter.

A good introduction to neural networks is [RUMESG|.

2.2 Genetic Algorithms

Genetic algorithms are algorithms for optimization and machine learning based loosely on several features
of biological evolution [HOLL75]. They require five components [DAVI87]:

1. A way of encoding solutions to the problem on chromosomes.
2. An evaluation function which returns a rating for each chromosome given to it.
3. A way of initializing the population of chromosomes.

4. Operators that may be applied to parents when they reproduce to alter their genetic composition.
Standard operators are mutation and crossover (see Figure 1).

5. Parameter settings for the algorithm, the operators, and so forth.
Given these five components, a genetic algorithm operates according to the following steps:

1. Initialize the population using the initialization procedure, and evaluate each member of the initial
population.

2. Reproduce until a stopping criterion is met. Reproduction consists of iterations of the following steps:



(a) Choose one or more parents to reproduce. Selection is stochastic, but the individuals with the
hightest evaluations are favored in the selection.

(b) Choose a genetic operator and apply it to the parents.

(c) Evaluate the children and accumulate them into a generation. After accumulating enough indi-
viduals, insert them into the population, replacing the worst current members of the population.

When the components of the genetic algorithm are chosen appropriately, the reproduction process will
continually improve the population, converging finally on solutions close to a global optimum. Genetic
algorithms can efficiently search large and complex (i.e., possessing many local optima) spaces to find
nearly global optima.

A key concept for genetic algorithms is that of schemata, or building blocks. A schema is a subset of
the fields of a chromosome set to particular values with the other fields left to vary. As originally observed
in [HOLLT75], the power of genetic algorithms lies in their ability to implicitly evaluate large numbers of
schemata simultaneously and to combine smaller schemata into larger schemata.

A good introduction to genetic algorithms is [GOLDSS].

3 Introduction to the Application Domain

The fixed-features supervised pattern classification problem is the following. Consider a k-dimensional
feature space and M separate classes. Different instances of a particular class generally have different
values for the features and hence correspond to different points in feature space. Our only knowledge
of how the instances of a particular class are distributed in feature space comes from a finite number of
exemplars which are known to be of this class and whose feature vectors are known. The set of exemplars
from all classes is called the training set. Then, the problem is: given a training set, select the most likely
class for any feature vector not in the training set.

Training consists of selecting a network which minimizes some error criterion (often taken to be the
sum of the squares of the errors on the training data) which predicts how well the network will perform on
test data (i.e., data not in the training set). Hence, training is an optimization problem, requiring search
through the space of possible networks for an optimal network. When the topology and transfer functions
are fixed, this is optimization over ", where n is the number of weights and biases left to vary.

We now discuss two different neural network architectures and their approach to pattern classification.

3.1 Sigmoidal Feedforward Networks

The most common neural network is a fixed-topology feedforward sigmoidal network. A sigmoidal network
is one such that the transfer functions of all its neurodes are sigmoids of the form f : x +— H% Such a
network is picture in Figure 2.

For a pattern classification problem with k features and M classes, a feedforward network must have k
input neurodes, M output neurodes, and an arbitrary number and configuration of hidden neurodes, where
hidden neurodes are those which have both incoming and outgoing connections. When the states of the
input neurodes are set to particular feature values and the states are propagated through the network to
the output neurodes, the values of the output neurodes are the likelihoods for each class. The evaluation
function optimized during training is often the sum over the training exemplars of the output errors squared.
These networks are usually trained using the backpropagation algorithm, which is a variant on gradient
search and is described in [RUMES6b]. Below, we examine an alternate training algorithm.



Figure 2: A feedforward sigmoidal network

3.2 Weighted Probabilistic Neural Networks (WPNN)

WPNN [MONT92] is a pattern classification algorithm which is an extension of Probabilistic Neural Net-
works (PNN) [SPEC90] and which works as follows. Let the exemplars from class i be the k-vectors fz for
j=1,..., N;. Then, the likelihood function for class 7 is defined to be
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where the covariance matrix ¥ is a positive-definite kxk symmetric matrix whose entries are the free
parameters. The conditional probability for class ¢ is
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Note that the class likelihood functions are sums of identical (generally) anisotropic Gaussians centered at
the exemplars.

Training WPNN consists of selecting the entries of ¥. This is equivalent to selecting a particular
distance metric in feature space. Hence, our work is similar to that of [ATKE91] and [KELL91|, which
are other nearest-neighbor-like algorithms which use modified metrics. Like [ATKE91] and [KELL91], we
have so far restricted ourselves to diagonal covariances, and we can hence think of the inverse of each of
the diagonal entries of ¥ as a weight on the corresponding feature. We therefore refer to these entries as
“feature weights”. Selection of feature weights is done by a genetic alorithm as described in Section 6.

The neural network implementation of the WPNN algorithm is as follows. There are k neurodes in the
input layer. There are M neurodes in the output layer, each with a normal (i.e., mean 0 and variance 1)
Gaussian transfer function and a zero bias. There are kN neurodes in the single hidden layer, where IV is
the total number of exemplars, each with a linear transfer function. The (ik + j)** hidden neurode (i) is
connected to the 5" input neurode with weight 1.0, (ii) has bias equal to the j** feature of the i*" example,
and (iii) is connected to the I output neurode, where [ is the class of the i*" exemplar, with weight 1
where f; is the selected feature weight for the jt" feature. Such a network is pictured in Figure 3.

4 The Rationale for Hybrid Processing

There are a few reasons why it can be beneficial to use genetic algorithms for training neural networks. With
regard solely to the problem of weight (and bias) selection for networks with fixed topologies and transfer



Figure 3: A WPNN network corresponding to a pattern classification problem with two features, two
classes, and three exemplars, two of class 1 and one of class 2.

functions (which is all that we address in this chapter), there is the issue of local optima. As the number
of exemplars and the complexity of the network topology increase, the complexity of the search space
also increases insofar as the error function obtains more and more local minima spread out over a larger
portion of the space. Gradient-based techniques often have problems getting past the local optima to find
global (or at least nearly global) optima. However, genetic algorithms are particularly good at efficiently
searching large and complex spaces to find nearly global optima. As the complexity of the search space
increases, genetic algorithms present an increasingly attractive alternative to gradient-based techniques
such as backpropagation. Even better, genetic algorithms are an excellent complement to gradient-based
techniques such as backpropagation for complex searches. A genetic algorithm is run first to get to the
“right hill” (i.e., a part of the space in a neighborhood of a nearly global optimum) and the gradient-based
technique climbs the hill to its peak [MONT89, BELE90].

A second advantage of genetic algorithms is their generality. With only minor changes to the algo-
rithm, genetic algorithms can be used to train all different varieties of networks. They can select wieghts
for recurrent networks, i.e. networks whose topologies have closed paths. They can train networks with
different transfer functions than sigmoids, such as the Gaussians used by WPNN or even step transfer
functions [KOZA91, COLL91, BORN91], which are discontinuous and hence not trainable by gradient
techniques. Furthermore, genetic algorithms can optimize not just weights and biases but any combination
of weights, biases, topology, and transfer functions. Possibly the most important type of generalization
allowed by genetic algorithms is the use of an arbitrary evaluation function. This allows potentially the
use of discontinuous evaluation functions based on the principle of Minimum Description Length (MDL)
[RISS89] to make the trained network generalize better. This ability to use arbitrary evaluation function
becomes increasingly important as we attempt to expand neural networks beyond pattern classification
and function approximation and towards domains such as control logic for autonomous vehicles or early
visual processing, where performance is not measured as a simple sum of squares of the error.

A third reason to study genetic algorithms for learning neural networks is that this is an important
method used in nature. While it is not clear that evolutionary learning methods are used in individual
organisms (although some such as [EDEL87] would claim so), it is relatively certain that evolutionary
learning at a species level is a major method of “wet” neural network training. For example, in parts of
the brain such as the early visual processing component, the neural network weights (in addition to the
topology and transfer functions) are essentially “hard-wired” genetically and hence were “learned” via the
process of natural selection.



5 Survey of Related Hybrid Systems

Genetic algorithms have been used together with neural networks in a variety of ways, each with their
own body of literature. One such way is to use genetic algorithms for the preprocessing of neural network
data, usually using the genetic algorithm to perform feature selection [CHAN91, DECK93]. A second use
of genetic algorithms with neural networks is to use the genetic algorithm to select the neural network
topology [HARP89, SCHA90]. A third such application is to employ genetic algorithms for selecting the
weights of a genetic algorithm [MONT89, MONT92]. Some approaches optimize both the weights and
the topology simultaneously [KOZA91, GRUA92, COLL91, BORNO91]. A fourth application is to use
genetic algorithms to learn the neural network learning algorithm [HARP89, BELE90, SCHA90]. We do
not attempt to give a survey of the whole field. Entire papers have been devoted to this endeavor, and
interested readers are referred to [SCHA92] as a good overview. In this chapter, we concentrate solely on
the problem of weight selection.

There are two basic differences between the different approaches to using genetic algorithms for weight
selection. The first difference is that the weight selection is performed on different architectures. Exam-
ples of the differenct network architectures to which genetic weight selection algorithms have been ap-
plied are: feedforward sigmoidal [MONT89, WHIT90, BELE90], WPNN [MONT92|, cascade-correlation
[KARU92, POTT92], recurrent sigmoidal [WIEL91] recurrent linear threshold [TORR91], feedforward with
step functions [KOZA91], and feedback with step function [COLL91, BORN91]. The second difference,
and the one on which this chapter concentrates, is the difference in the genetic algorithms. However, we do
not discuss these differences in this section; instead, in Section 6.1 we will compare and contrast each of the
five components of our genetic algorithms with other genetic algorithms after we discuss each component.

6 Case Studies

In this section, we describe how we have applied genetic algorithms to the problem of weight selection for the
two different neural network architectures discussed in Section 3. Section 6.1 details the five components of
the genetic algorithm used for each architecture and compares and contrasts them with other approaches.
Section 6.2 gives some experimental results.

6.1 The Genetic Algorithms
6.1.1 Representation

WPNN: The genetic algorithm we used with WPNN employs a “logarithmic” representation. A chro-
mosome is a fixed-length string of integers with values between 1 and K, with each location in the string
corresponding to a particular feature weight. The map from an integer n in the chromosome to its corre-
sponding feature weight values is n — B" %0 Here, K, ko and B are parameters we choose depending on
the desired range and resolution for the feature weight values. We use a logarithmic representation because
it provides large dynamic range with proportional resolution (and hence proportional representation in a
randomly selected population) at all scales.

Feedforward Sigmoidal: The genetic algorithm we used with feedforward sigmoidal neural networks does
not use any encoding scheme for the networks but rather uses the networks themselves as the chromosomes.
This allows us to define genetic operators such as MUTATE-NODES and CROSSOVER-NODES (see
below), which utilize the structure of the network when generating children. Note that when we use the
weight-based genetic operators such as BIASED-MUTATE-WEIGHTS and CROSSOVER-WEIGHTS (see



below) rather than node-based operators, the representation we use is equivalent to using a real-valued
fixed-length string representation.

Other Approaches: Some other genetic algorithms for weight selection use fixed-length binary string
representations [BELE90, WIEL91, WHITS89]. Their philosophy, which is common in the field, is that using
a binary representation maximizes the number of schemata and hence the amount of implicit parallelism in
the search. While this philosophy is valid when we have no a priori knowledge of what the good schemata
are, for the current problem we know that the bits which represent a single weight are inextricably linked
and hence are much more likely than random bits to form a good schema. Forcing the genetic algorithm
to learn what we already know makes the search much less efficient. [WHIT90] provides experimental
evidence of this theoretical argument.

We have taken this concept of treating as an indivisible unit elements which we know a priori to form
such a unit one step further by using the operators Mutate-Nodes and Crossover-Nodes (see below). These
operators treat all the incoming weights to a node as an indivisible unit, which makes sense because it is
only the values of these weights relative to each other which matter. The experimental results discussed
in Section 6.2 validate this reasoning.

When the weights are optimized simultaneously with the topology, then the number of weights is not
fixed and the representations are generally much less standard. For example, [KOZA91] represents a neural
network as a tree of variable size and shape. Similarly, [GRUA92] represents a network using a constrained
syntactic structure.

6.1.2 Evaluation Function

WPNN: To evaluate the performance of a particular set of features weights on the training set, we use
a technique called “leaving-one-out”, which is a special form of cross-validation [STON74]. One exemplar
at a time is withheld from the training set and classified using WPNN with those feature weights and the
reduced training set. The evaluation is the sum of the errors squared on the individual exemplars. Formally,
for the exemplar fé-, let [qu(i“';) for g = 1,..., M denote the class likelihoods obtained upon withholding this

exemplar and applying Equation 1, and let ]5,1 (:z_;’;) be the probabilities obtained from these likelihoods via
Equation 2. Then, we define the performance as
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We have incorporated two heuristics to quickly identify covariances which are clearly bad and give
them a value of oo, the worst possible score. This greatly speeds up the optimization process because
many of the generated feature weights can be eliminated this way. The first heuristic identifies covariances
which are too “small” based on the condition that, for some exemplar :13’; andallg=1,..M, iq(:f}) =0to

within the precision of IEEE double-precision floating-point format. In this case, the probabilities Pq(a':”;-)
are not well-defined. The second heuristic identifies covariances which are too “big” in the sense that too
many exemplars contribute significantly to the likelihood functions. Empirical observations and theoretical
arguments show that PNN (and WPNN) work best when only a small fraction of the exemplars contribute

significantly. Hence, we reject a particular X if, for any exemplar i’;-,
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Here, P is a parameter which we chose for our experiments to equal four.

Feedforward Sigmoidal: We used the same evaluation function as is standard for use with backpropa-
gation, the sum of the squares of the errors on the training set. We used the same evaluation function to
allow us to experimentally compare the genetic algorithm to backpropagation.

Other Approaches: While the evaluation function for the problem of pattern classification is similar
across different systems, the evaluation function can in general be as varied as the problems to which the
neural networks are applied. One such example is the application of neural networks to control using
reinforcement learning [WHIT91]. Here, the evaluation function is a score which summarized the feedback
from the environment.

6.1.3 Initialization Procedure

WPNN: The entries for each individual are integers chosen randomly with uniform distribution over the
range 1, ..., K, where K is defined above.

Feedforward Sigmoidal: The weights and biases of each network in the initial population are real
numbers randomly chosen from the two-sided exponential distribution e~ Iz, This distribution is an attempt
to reflect the actual distribution of weights in typical neural networks; the majority of weights are between
-1 and 1, but the weights can be of arbitrary magnitude.

Other Approaches: Most approaches use some variety of random seeding of the initial population.

6.1.4 Genetic Operators

WPNN: For training WPNN, we used the two standard genetic operators: mutation and crossover. The
mutation operator is standard, randomly selecting a fraction of the alleles (i.e., locations in the string) and
replacing their values with values randomly selected from the (finite) set of possible values. The crossover
operator is uniform crossover, i.e. it selects from which parent to take the value for a particular allele
independent of its choices for other alleles. This is in contrast to the point-based crossover operators (most
commonly, 1-point and 2-point crossover), which except at a small number of cut points will select the
values of neighboring alleles from the same parent. Point-based crossover can provide an advantage when
the low-order schemata tend to be formed from neighboring alleles, as is the case when real numbers are
encoded using a binary representation. However, since we are using a real-valued representation and since
there is no particular ordering to the feature weights, uniform crossover is the better choice.

Feedforward Sigmoidal: For training feedforward sigmoidal networks, we experimented with eight differ-
ent operators: three varieties of mutation (Unbiased-Mutate-Weights, Biased-Mutate-Weights, and Mutate-
Nodes), three varieties of crossover (Crossover-Weights, Crossover-Nodes, and Crossover-Features), and two
special-purpose operators (Mutate-Weakest-Nodes and Backprop). While some proved more effective than
others in our limited experiments (see Section 6.2), they all illustrate important concepts and all hold
potential for the future. We now discuss each of them.

Unbiased-Mutate-Weights: This operator replaces the weights of randomly selected connections in the
parent network with values chosen randomly from the same probability distribution used for initialization.

Biased-Mutate-Weights: This operator does the same as Unbiased-Mutate-Weights except that, instead of



replacing the old values with the randomly selected values, it adds the randomly selected values to the old
values. So, the probability distribution for the new weight values is a two-sided exponential centered at the
original value. The reasoning is that any network selected as a parent (especially as the run progresses)
is significantly better than a randomly selected network, and so its individual weights are usually better
than randomly selected ones. Hence, a mutation which uses the current weights and starting points will
outperform a mutation which ignores the current weights. (This concept is similar to Davis’ Creep operator
[COOMS8T7].) The experiments (see below) bears this out.

Mutate-Nodes: This operation randomly selects nodes from the set of all hidden and output nodes and
performs a biased mutation on all the incoming weights for the selected nodes. As mentioned above,
we know a priori that the set of incoming weights for a particular node forms a low-order schemata, or
building block. A mutation which disrupts as few of these schemata as possible by concentrating its changes
in a small number of them should outperform a muation which disrupts many of these schemata. The
experiments (see below) confirms this reasoning. [Aside: While the genetic algorithm literature discusses
extensively the problem of schema disruption due to crossover, there is little discussion of schema disruption
due to mutation. It is perhaps the widespread use of binary representations together with maximally
disruptive mutation operators which have cause the genetic algorithm community to devalue mutation.]

Crossover-Weights: This operator performs uniform crossover (described above) on the weights and biases
of the two parent networks. Note that if we were to encode the weights in a string so that the incoming
weights for any node were all adjacent, point-based crossover would probably be better than uniform
crossover because it would disrupt less schemata. However, since we know where these schemata are, an
even better approach is the following.

Crossover-Nodes: This operator performs uniform crossover with the basic units exchanged being the set of
all incoming weights of a particular node. This preserves what we know a priori to be some of the low-order
schemata. As discussed in Section 6.2, our experiments were inconclusive about whether Crossover-Nodes
was better than Crossover-Weights because the dominant operator was mutation.

Crossover-Features: This operator attempts to compensate for the problem of “competing conventions,”
a term first used in [WHIT90] for a problem discussed earlier in [MONT89]. This problem arises because
hidden nodes which are connected to the same set of other nodes are interchangeable, i.e. if two such
neurodes exchange all their weights then the output of the network will still always be the same. However,
interchangeable neurodes generally play different roles in a network. If two parent networks have assigned
neurodes from a set of interchangeable neurodes to different roles, then the two types of crossover discussed
above will not be effective. The Crossover-Features operator first attempts to rearrange the hidden nodes
of one of the parent networks so that all the hidden neurodes are playing the same role before performing
crossover at the node level.

Mutate-Weakest-Nodes: This operator is a version of node-based mutation which differs from Mutate-
Nodes in the following ways. First, instead of randomly selecting which nodes to mutate, it mutates those
nodes which contribute the least to the network. The contribution of a node is defined as the total error
of the network with the node deleted minus the total error of the network with the node included. (We
have devised an efficient method for calculating these contributions.) Second, instead of mutating just the
incoming weights, it also mutates the outgoing weights. Third, if the contribution of the nodes is negative,
it performs an unbiased mutation rather than a biased mutation. The intuition behind this operator is
that performing mutation on nodes that are contributing the least to the network (and especially on those



that are contributing negatively) will yield bigger gains on the average. As shown in Section 6.2, Mutate-
Weakest-Nodes does in fact yield large payoffs when at the beginning of a genetic algorithm run, before
the population has started converging to good solutions and hence while there are still many nodes making
negative contributions. However, it becomes ineffective after the population has converged and all the
neurodes are making positive contributions because the size of a neurode’s positive contribution is a factor
of both the role it plays as well as how well it plays it. Note that since this operator will never change
neurodes which are already performing well, it should not be the only source of diversity in the population.

Hillclimb: This operator creates a child by taking a single step in the direction of the gradient of the parent
of a variable step size. (See [MONTS89] for more details.) This operator is detrimental at the beginning
of a run because it yields only incremental improvements to the parents at the same time that it acts to
greatly reduce diversity. However, it is beneficial at the end of a run in order to help climb the final hill
(see Section 6.2).

Other Approaches: Some genetic algorithms leave out the crossover operator and just use mutation
[PORT90]. The work of [WHIT91] suggests that this can be a good idea.

Some genetic algorithms use an additional operator, called the reproduction operator, which just copies
a selected parent without change into the next generation. Because we use a steady-state genetic algorithm
(see the next section), such an operator is superfluous.

Those genetic algorithms which have representations based on syntactically constrained structures
[KOZA91, GRUA92] need special mutation and crossover operators which respect these syntactic con-
straints and which are similar in some respects to out node-based operators.

6.1.5 Parameter Values

WPNN: Some of the key parameter values are as follows:

Population-Size: We used a population size of 1600. We needed such a large population size because
roughly 90of the initial population evaluated to oo (i.e., did not pass the heuristic screener). Hence, only
around 160 members of the initial population had any information at all, and this was about the minimum
needed to provide sufficient diversity for reproduction.

Generation-Size: This parameter is the number of new individuals generated and old individuals discarded
from the population during one iteration of the reproduction process. There are two big issues in se-
lecting the value of GENERATION-SIZE. The first issue is whether to choose it to be small relative to
POPULATION-SIZE or to choose it equal to or slightly less than POPULATION-SIZE. The former is
known as the “steady-state” approach, while the latter is “generational replacement” [SYSW89]. Assum-
ing that the evaluation function does not change with time (which is the case with our problem), the only
argument in favor of the generational replacement approach is that it converges slower than the steady-state
approach and hence is more likely to find a nearly global optimum. However, controling convergence rate
by proper selection of PARENT-SCALAR and POPULATION-SIZE is seemingly a much more efficient
way to protect against premature convergence than throwing away good individuals. The second issue is
whether to choose GENERATION-SIZE to be one or a small number greater than one. As discussed in
[MONT®91], this depends on whether the evaluations are being performed by a single CPU or by multiple
CPU’s. When there is a single CPU performing evaluations, the only effect of a generation size greater
than one is that it imposes a delay between when good individuals are found to be good and when they can
be used as parents. Hence, the optimal GENERATION-SIZE when using a single CPU is one. However,
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when using multiple CPU’s, it is usually necessary to have GENERATION-SIZE greater than one in order
to utilize the potential parallelism. Because we did our experiments with a single CPU, all the experiments
except those evaluating full generational replacement used a GENERATION-SIZE of one.

Parent-Scalar: This is the parameter which determines the parent selection probabilities, i.e. the probabil-
ity for each member of the population that it will be selected as a parent the next time one is needed for
reproduction. We use (as provided by OOGA) an exponential distribution of parent selection probabilities
in which these proabilities depend only on relative ranking withing the population and the probability of
selecting the (n -+ 1)* best individual divided by the probability of selecting the n'” best is the same for all
n. This ratio is the parameter Parent-Scalar. The value of Parent-Scalar (in addition to Population-Size)
controls the convergence rate of the genetic algorithm; making Parent-Scalar smaller (i.e., closer to zero)
makes it converge faster, while making Parent-Scalar large (i.e., closer to one) makes it converge slower.
We were able to find good solutions relatively quickly with Parent-Scalar set to 0.9.

Feedforward Sigmoidal:

Population-Size: We used a population size of 50. Using such a small population meant that the space was
very coarsely sampled by the initial population and forced the run to converge quickly. After convergence,
the genetic algorithm essentially became a hill climber using mutations to drive its ascent. It is not
clear whether this is the desired behavior for the genetic algorithm, but we probably should have at least
experimented with larger populations and slower convergences.

Generation-Size: We used a generation size of one for the reasons given above.

Parent-Scalar: We used a value for Parent-Scalar which varied linearly from 0.93 to 0.89 as the run
progressed. In this manner, we were able to do more exploration at the beginning of a run and more
exploitation at the end of a run.

Other Approaches: Population sizes vary widely, but our two genetic algorithms with population sizes
of 1600 and 50 are close to the extremes. [WHIT91] describes experiments with a population size of 1,
although this is correctly referred to as stochastic hillclimbing rather than a true genetic algorithm.
Many genetic algorithms use full generational replacement rather than steady-state replacement.
There are a variety of approaches to parent selection, including tournament selection and fitness-
proportional selection, and there is not yet any clearly superior approach.

6.2 Experimental Results
6.2.1 WPNN

Because WPNN was a new and untested algorithm, our experiments with WPNN centered on the overall
performance rather than on the training algorithm. To test the performance of WPNN, we constructed a
sequence of four datasets designed to illustrate both the advantages and shortcomings of WPNN. Dataset
1 is a training set we generated during an effort to classify simulated sonar signals. It has ten features,
five classes, and 516 total exemplars. Dataset 2 is the same as Dataset 1 except that we supplemented the
ten features of Dataset 1 with five additional features, which were random numbers uniformly distributed
between zero and one (and hence contained no information relevant to classification), thus giving a total of
15 features. Dataset 3 is the same as Dataset 2 except with ten (rather than five) irrelevant features added
and hence a total of 20 features. Like Dataset 3, Dataset 4 has 20 features. It is obtained from Dataset
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Figure 5: Comparison of mutations.

3 as follows. Pair each of the true features with one of the irrelevant features. Call the feature values of
the i'" pair f; and g;. Then, replace these feature values with the values 0.5(f; + g;) and 0.5(f; — g; + 1),
thus mixing up the relevant features with the irrelevant features via linear combinations. The results of
the experiments are shown in Figure 4.

Because WPNN fully met its theoretical expectations, the training set must have found good sets of
weights. It was able to do this by evaluating relatively few points: about 300 per feature weight (i.e.,
3000 for Dataset 1, 4500 for Dataset 2 and 6000 for Datasets 3 and 4) with about half of these eliminated
quickly via the two heuristics.

6.2.2 Feedforward Sigmoidal

We have run a series of experiments discussed in detail in [Montana, 1989]. We summarize the results here.
First, comparing the three general-purpose mutations resulted in a clear ordering: (1) MUTATE-NODES,
(2) BIASED-MUTATE-WEIGHTS, and 3) UNBIASED-MUTATE-WEIGHTS (see Figure 6.2.2). Second,
a comparison of the three crossovers produced no clear winner (see Figure 6.2.2). Third, when MUTATE-
WEAKEST-NODE was added to a mutation and crossover operator, it improved performance only at the
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Figure 8: Comparison of genetic algorithm with backpropagation.

beginning; after a certain small amount of time, it decreased performance (see Figure 6.2.2). Fourth, a
hill-climbing mode with just a HILLCLIMB operator and a population of size two gave temporarily better
performance than MUTATE-NODES and CROSSOVER-NODES but would quickly get stuck at a local
minimum. Finally, a genetic training algorithm with operators MUTATE-NODES and CROSSOVER-
NODES outperformed backpropagation on our problem (see Figure 6.2.2).

6.2.3 Others

A variety of experimental evidence from other work supports some of the main conclusions of our work:
first, genetic algorithms can find nearly globally optimal weight values and are especially useful when used
in conjunction with a local hill climber [BELE90, DECK93], and second, genetic algorithms can train
network architectures for which other training algorithms do not exist [TORR91, KOZA91].

7 Future Directions

The application of genetic algorithms to neural network weight selection, and more generally neural network
training, is a rapidly growing area of research with a few different trends. The first trend is towards more
rigorous experimentation on “standard” datasets. In early work, researchers often used their own datasets
on which gradient-based techniques did not work well (and hence which required a different type of training
algorithm). However, it is now time to compare genetic algorithms against gradient-based techniques on
well-known and well-characterized datasets on which gradient-based techniques have achieved success.

The second trend is towards applying genetic algorithms to new neural network architectures. In
particular, whole new architectures, such as WPNN, are being developed because it is known that genetic
algorithms will be able to train them.

The third, and probably the most important, trend is towards the use of more complex evaluations
functions. The most interesting potential consequence of this is the acceleration of neural network de-
velopment in areas other than pattern recognition and function approximation. While neural networks
have provided small improvements over previous algorithms for these two tasks, neural networks will not
reach their potential for making computers “smarter” until they can perform tasks such as early visual
processing and control of autonomous vehicles. Without use of genetic algorithms, researchers have had
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to hand-design neural networks to perform such tasks, which cannot be evaluated as the sum of the errors
squared. Genetic algorithms provide a potential method to learn neural networks for such tasks and hence
to simplify the development of such networks and to make them more robust.
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