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Abstract

Optimally controlling the timings of traf-
fic signals within a network of intersections
is a difficult but important problem. Be-
cause the traffic signals need to coordinate
their behavior to achieve the common goal
of optimizing traffic flow through the net-
work, this is a problem in collective intelli-
gence. We apply a hybrid of a genetic algo-
rithm and strongly typed genetic program-
ming (STGP) to the problem of learning
control laws which optimize aggregate per-
formance. STGP learns the single basic de-
cision tree to be executed by all the inter-
sections when deciding whether to change
the phase of the traffic signal. The genetic
algorithm learns different constants to be
used in these decision trees for different
intersections, hence allowing specialization
based on differences in geometry and traf-
fic flow. Preliminary experimental work
shows that our approach yields good per-
formance on a variety of network configu-
rations and that it can evolve control laws
which induce cooperation, communication,
and specialization among the traffic signals.

1 Background

1.1 Networks of Traffic Signals

Most traffic signals in use today use preset timings. These
preset timings are optimized off-line for the traffic pat-
terns at a particular time of day. At predetermined times
during the day, a new set of timings is downloaded to
each traffic signal in the network. Two popular pack-
ages for doing the off-line optimization are MAXBAND
[Little et al., 1981] and TRANSYT-7F [FHWA, 1986].

For the purposes of this paper, we are interested in a
different, newer type of control known as adaptive traffic
signal control. This type of control takes into considera-
tion the variations in traffic flow (both variations around
the average and variations from the average) which nat-
urally occur. Based on sensory inputs of the current

traffic conditions, the control algorithm modifies the sig-
nal timings over time.

SCOOT [Robertson and Bretherton, 1991] starts with
a set of preset timings as optimized by TRANSYT. At
fixed intervals it modifies the splits, offsets, and cycle
times of each signal so as to try to improve the perfor-
mance evaluation of this signal and its immediate neigh-
bors. OPACS [Gartner et al., 1991] also has each signal
modify its timing to optimize some local evaluation cri-
terion; its major innovation is the use of dynamic pro-
gramming as a way to efficiently look further ahead in its
predictions of future performance. SCATS [Sims, 1979]
and Chiu’s fuzzy logic approch [Chiu, 1992] both use
heuristic rules as a way to adjust signal timings; the ma-
jor difference is that Chiu’s rules are fuzzy rules.

A shortcoming of all these techniques is that a po-
tential adaptation is evaluated based only on its effect
on a small neighborhood of signals over a small interval
of time. The global effects of this adaptation on the full
network are ignored despite the fact that these effects
are often significant. Hence, for our work we draw on an
area of research that focuses on how to coordinate indi-
vidual actions to produce desired aggregate behavior.

1.2 Collective Intelligence

The concept of collective intelligence has been developed
in the fields of Robotics and Artificial Life. The basic
idea is that many individual agents each executing sim-
ple, deterministic behaviors can interact in such a way
that the aggregate behavior of the group is complex and
not fully predictable from knowledge of the individual
behaviors. One early example of artificial collective intel-
ligence is the Boids simulation, which simulates flocking
of birds [Reynolds, 1987]. A variety of work has followed,
including some using real robots, e.g. [Mataric, 1994].

One important issue in collective intelligence and in
our work is that of communication [Arkin and Hobbs,
1993]. Explicit communication can aid coordination among
agents, but there generally is a cost (in the case of traf-
fic signals a cost which is measurable as the price of the
extra wires and extra interfaces required).

Another important issue in collective intelligence, and
the key one for our work, is learning the control strate-



gies which allow agents to cooperatively perform a task.
For learning control laws for a group of robots, [Mataric,
1994] uses a type of reinforcement learning. For learn-
ing control of a colony of ants foraging for food, [Collins
and Jefferson, 1992] use a genetic algorithm to learn the
weights and connectivity of an artificial neural network.
Most relevant to our work are those approaches using
genetic programming (GP) as the learning paradigm.
Koza’s work on learning strategies for ants foraging for
food was the first to use GP in this context [Koza, 1990].
Subsequent work includes Ryan’s use of GP to evolve
teams of callback functions in an event-driven system
[Ryan, 1995]. Most similar to our work is that of [Haynes
et al., 1995], which uses strongly typed GP (STGP) to
evolve strategies for packs of predators trapping a prey.

1.3 Genetic Programming Enhancements

Strong Typing: Strongly typed GP (STGP) [Mon-
tana, 1995] is an enhancement to standard GP [Koza,
1992] where (i) all the functions know what data types
they take as arguments and what data type they re-
turn, and (ii) the routines for tree generation, mutation,
and crossover all ensure that data types are consistent.
The big advantage of STGP over GP when using typed
data is that STGP eliminates the huge overhead of hav-
ing to evaluate syntactically incorrect parse trees (which
greatly outnumber the syntactically correct parse trees).

GA/GP Hybrids: An issue in GP is how to gen-
erate constants for use in the parse trees. The standard
approach is to define a terminal < which generates a
random numerical constant in some range each time it
is initially placed in a tree [Koza, 1992]. This method
works well when the constants required are single, iso-
lated numbers. However, especially when using STGP,
the constants required are often not single numbers but
rather more complex data structures such as the matri-
ces in [Andre, 1994]. Extending the terminal < to gener-
ate random instances of these data structures makes the
search for correct values for these constants essentially a
random search, which is known to be impractically inef-
ficient for higher-dimensional search. A more practical
alternative is to utilize a hybrid GA/GP search [Andre,
1994; Nguyen and Huang, 1994]. The GA performs the
search to find the right values for the constants, while
the GP searches the space of parse trees. The chromo-
some representation contains both the parse tree and the
constant values, and there are different genetic operators
for manipulating the parse trees and the constants.

2 Our Approach

2.1 The Simulation

The simulator we are using is a special version of the
TRAF-NETSIM traffic simulator. TRAF-NETSIM has

been developed by the U. S. Federal Highway Adminis-
tration and has been one of the standards of the traffic
engineering field. It is a microsimulator, which means
that it simulates individual vehicles rather than average
flows. It allows the user to specify via a file the geometry
of the network, the traffic flows, and the signal timings
(which for the standard TRAF-NETSIM are fixed).

A special version of TRAF-NETSIM has been de-
veloped for evaluating adaptive traffic signal control. It
contains two major enhancements. First, sensors can be
placed in the road in order to detect the passage of vehi-
cles. Second, the fixed signal timings have been replaced
with hooks for a user-implemented adaptive control law.
This control law utilizes the sensor outputs in determin-
ing when to change the signal phase. The control law is
executed for each traffic signal once every second.

We have linked our enhanced genetic programming
code with the simulator to allow execution of a specified
parse tree as the main part of an adaptive control law.
The high-level logic of this control law is as follows. We
require that there be exactly four phases for the signal,
two green phases and two corresponding yellow phases.
(This simplifying assumption excludes situations such as
delayed-green phases and left-turn-only phases.) The
yellow phases all last some fixed amount of time, which
for the experiments described below was five seconds.
To determine when to end a green phase, we execute
the parse tree every second. The parse tree returns a
Boolean value which is true if the signal should change
at the current time and false if it should not.

We require that there be two sensors for each link of
an intersection. One should be placed right next to the
intersection to count the cars as they enter the intersec-
tion. The other should be placed further away to count
the cars as they approach the intersection. The place-
ment of this second sensor should be such that the queue
for that link is considered “full” if cars are stopped back
to that sensor. In the experiments described below, we
always placed this second sensor 120 feet from the signal.

2.2 Phase-Dependent Constants

A phase-dependent constant is a constant in a parse tree
which has a different value for each phase of each in-
tersection. A simple example of how a phase-dependent
constant can be used is the parse tree (> SINCE-CHANGE
CONSTANT-1), where SINCE-CHANGE is the time since
the current signal last changed color and CONSTANT-
1 is a phase-dependent constant. This tree implements
fixed-timings control where the length of each phase is
given by the value of CONSTANT-1 for that phase. Phase-
dependent constants are useful because they provide a
mechanism to have each phase of each intersection exe-
cute a single basic parse tree while allowing for the fact
that each phase is constrained by its own particular ge-
ometry and traffic patterns and requires customization



Function Argument
Types

Return
Type

SINCE-CHANGE INTEGER

INTEGER

APPROACHING
QUEUE-FULL

NUMBER-CARS
WAITING

PHASE
PHASE
PHASE
PHASE BOOLEAN

BOOLEAN
BOOLEAN

BOOLEAN BOOLEANOR BOOLEAN
AND BOOLEAN

BOOLEAN BOOLEAN

NOT BOOLEAN BOOLEAN

> INTEGER
INTEGER BOOLEAN

CONSTANT-i INTEGER
MOVING PHASE
STOPPED PHASE

Figure 1: Baseline functions with their types.

of its parse tree for these factors.
Because we have assumed that each intersection has

exactly two phases, each phase-dependent constant will
have 2N values, where N is the number of intersec-
tions. These 2N values can be thought of as a 2N -
valued real string, which can be evolved using a stan-
dard string-based genetic algorithm. To evolve phase-
dependent constants simultaneously with the parse tree,
we use a GA/GP hybrid as described in Section 1.3.

2.3 The Functions

Figure 1 shows the functions utilized in all the experi-
ments described below. Note that the PHASE data type
enumerates the 2N different green phases discussed in
Section 2.2. We now describe these functions.

NUMBER-CARS examines all incoming links for the
specified phase and returns the maximum number of cars
between the two sensors for any link (calculated as the
difference of the vehicle counts of the two sensors).

WAITING tells whether there is a car currently stopped
waiting for the specified phase to turn green (as detected
by there being a car sitting directly over the sensor clos-
est to the intersection for any incoming link).

APPROACHING tells whether there is a car which
is approaching the specified phase (as detected by the
vehicle count of the second sensor of an incoming link
exceeding that of the first).

QUEUE-FULL tells whether there are cars backed
up to the second sensor for any incoming link of the
specified phase (as detected by there being a car sitting
directly over this second sensor).

SINCE-CHANGE returns the time since the current
intersection (i.e., that intersection for which the control
law is currently being executed) last changed its phase.

CONSTANT-1 and CONSTANT-2 are two phase-

Function Argument
Types

Return
Type

INTEGERDS-NUM-SAME PHASE

BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN

PHASE
PHASE
PHASE
PHASE
PHASE

INTEGERDS-NUM-CROSS
DS-WAIT-SAME
DS-WAIT-CROSS

DS-GREEN-SAME
DS-GREEN-CROSS

Figure 2: Additional communications functions

dependent constants that are simultaneously evolved along
with the parse tree (see Section 2.2). They return the
entry in the real-valued string which corresponds to the
current green phase of the current intersection.

MOVING (STOPPED) returns the current green (red)
phase of the current intersection.

Figure 2 shows six additional functions used only in
one of the experiments. We refer to these functions as
“communications functions” because they require data
from the sensors of neighboring intersections. In a real
traffic network, implementing such functions would re-
quire extra expenses, e.g. additional wires being laid in
the ground. Therefore, we consider these experimental
functions whose potential contributations need to be de-
termined first in simulation. The functions are:

DS-NUM-SAME returns the maximum number of
cars between the two sensors for any link downstream
from the specified phase.

DS-NUM-CROSS returns the maximum number of
cars between the two sensors for any link crossing an
intersection downstream from the specified phase.

DS-WAIT-SAME returns whether there is a car wait-
ing at any link downstream from the specified phase.

DS-WAIT-CROSS returns whether there is a car wait-
ing at any link crossing an intersection downstream from
the specified phase.

DS-GREEN-SAME returns whether any link down-
stream from the current phase has a green signal at the
downstream intersection.

DS-GREEN-CROSS returns whether any link cross-
ing an intersection downstream from the current phase
has a green signal at that intersection.

Note that all these communications functions address
downstream links. This is because there is always im-
plicit communications from the upstream links based on
the number of cars approaching, while there is no such
mechanism for implicit communication from the down-
stream links. Hence, communication from the down-
stream links is more likely to be useful.

2.4 The Evaluation Function

The basic measure of effectiveness we use for evaluat-
ing performance is delay. Delay is defined as the total
amount of time lost due to the traffic signals. This in-
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Figure 3: Network configuration 1.
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cludes not just the time stopped at a traffic signal but
also the time lost traveling at less than free-flow speed
when decelerating to a stop and then accelerating again.

The precise criterion is the sum over each phase of
each intersection of the number of cars passing this phase
times the square of the average delay for this phase.
This measure can be easily calculated from the statis-
tics TRAF-NETSIM keeps and represents a reasonable
tradeoff between efficiency and equity. By weighting the
contribution by the number of cars, we make sure that
we give more weight to the phases with larger number of
cars, hence promoting efficiency. However, by using the
square of the average delay rather than just the average
delay, we ensure that the phases with smaller number of
cars cannot be ignored, hence promoting equity.

3 Experimental Results

3.1 The Network Configurations

For the experiments we have performed so far, we have
used three different network configurations. Figure 3
shows the first configuration. It contains two streets
running north-south, both one-way in the south direc-
tion, and two two-way streets running east-west. Vehi-
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Figure 5: Network configuration 3.

cles approaching an intersection from the east or west
turn onto the one-way street with a probability of 0.8
and go straight with a probability of 0.2. Vehicles ap-
proaching an intersection from the north turn left with a
probability of 0.15, turn right with a probability of 0.15,
and go straight with a probability of 0.7.

There are six sources of vehicles entering the net-
work. These sources randomly generate vehicles with an
exponential distribution for the time between vehicles.
The two sources on the north-south streets generate an
average of 300 vehicles per hour, while the four on the
east-west streets generate 100 vehicles per hour.

The intersections are arbitrarily labeled A-D. This
ordering of the intersections is used when accessing the
vector of values for a phase-dependent constant. The two
phases of intersection A are the first two entries in this
vector, then the two phases of intersection B, and so on.
By convention, the north-south phase of an intersection
precedes the east-west phase.

Figure 4 shows the second configuration. It contains
two streets running north-south and two east-west, all
two-way streets. The network is fully symmetric.

Figure 5 shows the third configuration. It contains
one one-way street running north-south and four two-
way streets running east-west.

Note that all three geometries contain four intersec-
tions. This was a good number for preliminary work,
but to prove that our approach is practical requires that
in future work we investigate larger networks and the
scaling issues involved.

Also note that we have not yet considered a config-
uration where the average traffic flows vary with time.
Since the ability to adjust for such variations is poten-
tially the main benefit of adaptive control, experiments
with time-varying flows are a high priority for future
work.



Configuration 1 2 3
Population Size
Evaluations

Tree Score (Training)

Fixed Score (Training)

1000 2000 5000

Tree Score (Test)

Fixed Score (Test)

1000 2000 13000
20.13
20.99

22.62
21.81
24.20
24.83

540.7
558.0
579.6
640.2

24.78
28.76

Figure 6: Summary of experimental results.

3.2 The Results

For each configuration, we performed three experiments.
The first experiment was to make a run with the ap-
proach described above to see what the best individual
was and how well it performed. For all three configu-
rations we used the functions in Figure 1, but only for
the third configuration did we used the communications
functions of Figure 2.

The second experiment was to use a genetic algo-
rithm to optimize fixed-cycle timings to see how well a
fixed-cycle approach could perform on the same problem.
In this case, the individuals were real-valued strings of
length twelve, three entries for each intersection. Two
of the entries for each intersection were the phase splits
(i.e., how long each phase stays green), while the third
entry was the offset, which tells at what point in the cy-
cle to start. The phase split entries could vary between 0
and 30, while the offset entries could vary between 0 and
99 (indicating the percentage of the cycle completed at
the start). The population size was 1000 and the num-
ber of evaluations 10,000 for each run. The rationale for
this experiment is to compare the adaptive control law
we evolved with the best possible fixed-cycle control.

The third experiment was to make three runs with
three different random seeds using the best individual
from the STGP/GA run and then the best individual
from the fixed cycles run. The rationale for this experi-
ment is to see how well the two techniques generalize to
test cases with the same geometry and flow statistics.

A summary of the runs is given in Figure 6. Note that
these results clearly indicate that the adaptive control we
evolve: (i) is superior to fixed-cycle control and (ii) gen-
eralizes well to new situations with the same statistics.
Some other observations are the following. The good
generalization of the trees was probably due to the sim-
plicity of the trees. As more complex trees are required
(for example, when we start looking at variations of the
average flows), we expect generalization performance to
drop unless we compensate with longer simulations. In
two of the three cases, the best individual was found
in the initial population, and evolution gave no benefit.
This is often the case when using strong typing (which
restricts the search space) and when the best tree is sim-
ple [Montana, 1995]. Finding more complex trees should

require the full power of evolution rather than just a ran-
dom search.

We now analyze the the best individual for each STGP/GA
run. Note that we have reduced each of these individuals
to their simplest form to simplify analysis.

Configuration 1: The best individual had tree

(OR (> CONSTANT-2 CONSTANT-1)
(APPROACHING STOPPED))

and constants

Constant 1 = [ 27 10 11 16 14 12 20 13 ]
Constant 2 = [ 6 24 4 18 11 30 13 17 ]

Observe that the constant values for the north-south
phases (the odd-numbered entries) are such that (> CONSTANT-
2 CONSTANT-1) is false while for the east-west phases
(even-numbered entries) (> CONSTANT-2 CONSTANT-
1) is true. Hence, for the north-south phases the tree is
equivalent to (APPROACHING STOPPED), while for
the east-west phases the tree is always true. There-
fore, the strategy is to always keep each signal green
for the north-south street except when a car is detected
approaching on the east-west street. This makes sense
when we observe that (i) the traffic flows are light and (ii)
the north-south streets are more heavily traveled than
the east-west streets. Note that this is a good example
of specialization using the phase-dependent constants.

Configuration 2: The best individual had tree

(AND (APPROACHING MOVING)
(WAITING STOPPED))

This tree succeeds because it provides a good trade-
off between allowing vehicles which are moving to main-
tain their momentum and not forcing vehicles which are
stopped to wait too long. It may seem counterintuitive
to wait until a vehicle is approaching a green light before
changing to yellow until we remember that the sensor is
only 120 feet from the intersection. Hence, not only the
vehicle which triggered the sensor but also one or two
vehicles behind it can make it through the intersection
before the signal turns red. Because this configuration
has a moderately heavy traffic load, if there is not cur-
rently a vehicle approaching the signal, there soon will
be, often as part of a small group. Keeping the sig-
nal green long enough to allow a group through allows
maintenance of momentum. There is coordination of ef-
fort (i.e., cooperation) because each traffic signal tends
to hold vehicles to form them into small groups, which
another traffic signal can exploit.

Configuration 3: The best individual had tree

(AND (APPROACHING STOPPED)
(NOT (DS-WAIT-SAME MOVING)))

Observe that (DS-WAIT-SAME MOVING) is always
false for all the east-west phases and the north-south
phase of the southernmost intersection. Hence, for these
five phases, the tree is equivalent to (APPROACHING



STOPPED), which for the east-west phases is almost al-
ways true due to the large traffic flow on the north-south
street. For the other three north-south phases, the term
(NOT (DS-WAIT-SAME MOVING)) is for momentum
preservation. The timing is such that keeping the phase
green when the downstream intersection has cars waiting
on the same street guarantees that the additional cars
which are let through the intersection have no delay at
the downstream intersection.

4 Conclusions and Future Work

The results are preliminary (due to the limited size and
complexity of the problems) but encouraging. We were
able to train our controller for a variety of geometric
configurations and traffic conditions. The fact that our
approach outperformed fixed timings shows that it is
indeed adapting to variations around the average and
hence fulfilling some of the promise of adaptive control.
It was able to coordinate the individual traffic signals for
aggregate goals, both with and without explicit commu-
nication. Finally, our approach allowed specialization,
i.e. different phases of different intersections executing
qualitatively and quantitatively different behaviors.

However, many key questions remain unanswered.
These include: (i) how to make our approach handle a
large number of intersections, (ii) how our approach han-
dles variations in the average traffic flows, (iii) how our
approach compares in performance with other adaptive
control approaches, and (iv) how well a control strategy
evolved for a simulation performs in a real network.
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