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Abstract

We have createda framework that provides a
way to representa wide range of scheduling
andassignmentproblemsacrossmany domains.
We have also createdan optimizing scheduler
that can, without modification,solve any prob-
lem representedusingthis framework. Thethree
componentsof a problemrepresentationarethe
metadata,thedata,andtheschedulingsemantics.
The schedulerperformsthe optimizationusing
anorder-basedgeneticalgorithmto feeddifferent
task orderingsto a greedyschedule/assignment
builder. The schedulerobeys the hardandsoft
constraintsspecifiedin theschedulingsemantics.
We haveappliedthis reconfigurableschedulerto
avarietyof schedulingandassignmentproblems
including the job shop, traveling salesman,ve-
hicle routing, andgeneralizedassignmentprob-
lems.Theresultsdemonstratethat theoptimizer
can provide not only easyreconfigurabilitybut
alsocompetitiveperformance.

1 Intr oduction

Optimizing schedulershave traditionally targeteda single
problemor narrow classof problems.Changinga sched-
uler to handlea new problemor domainhasrequiredre-
designingthe schedulerandrewriting portionsof its soft-
ware. This introducesan expensethat makes optimized
schedulingimpractical for most applicationsthat could
benefitfrom it. Only applicationswith large amountsof
money tied to the quality of the schedulescanjustify the
costsof developingcustomsoftwareandalgorithms.

Our work aimsto changethis. We providea simpleyet ef-
fectivewayfor auserto configureouroptimizingscheduler
for a particularproblem/domain.Configuringour sched-
uler doesnot require recodingor detailedknowledgeof

how the schedulerworks. This canpotentiallymake op-
timizedschedulingsufficiently inexpensive to bepractical
for a fargreaterrangeof problemsthanit is currently.

Other researchershave recognizedthe benefitsof a uni-
fied or reconfigurableapproachto scheduling.[Smithand
Becker, 1997] createsa unified schedulingontology, but
this ontology is not well suited to simple representation
of a problemandis not in a form easilyusedby an opti-
mizing scheduler. [Davis andFox, 1994] and[McIlhagga,
1997] bothmake initial attemptsat a reconfigurablesched-
uler, but they fall shortin termsof thegeneralityandflex-
ibility required.Thework on AMPL [Foureret al., 1993]
doesemphasizeeasyreconfigurability. It is similar to our
approachin its useof algebraicexpressionsto definethe
problemas well as its separationof the problemspecifi-
cation from the solver. It is different from our approach
becauseit is targetedat mathematicalprogrammingappli-
cationsandnot well suitedto many symbolicallyoriented
schedulingproblems.

The two key innovationsthat have allowed us to createa
truly reconfigurableoptimizing schedulerarein the prob-
lem representation.The first is letting the userdefinethe
metadata,i.e. theformatsfor all thedatasentto thesched-
uler. Hence,for any problemthe usercan definea data
representationthat is natural for that problem. The sec-
ondinnovationis allowing theuserto specifytheschedul-
ing semanticsusing formulas. This allows the scheduler
to computeproblem-specificinformationsuchaswhether
a resourcecanperforma taskor how muchtimearesource
takesto performa task.

Our schedulerusesan approachthat was introducedby
[Whitley et al., 1989] andrefinedby [Syswerda,1991]. An
order-basedgeneticalgorithmgeneratestaskorderingsto
feedto a greedyschedulebuilder. What is novel aboutour
scheduleris theway that it cansolve any schedulingprob-
lem representedusingour problemrepresentationframe-
work. Hence,thescheduleris truly reconfigurable.

In theremainderof thepaper, we startwith anoverview of



Constraint Return
Type

Defined Vari-
ables

Default
Value

Description

Optimization
Criterion

number 0 Numericalmeasureof quality of thecurrentfull sched-
ule

Optimization
Direction

multiple
choice

N/A minimize Mustbeeitherminimizeor maximize

Delta Crite-
rion

number task,resource 0 Incrementalcontribution to optimizationcriterionintro-
ducedby having resourceperformtask

BestTime datetime task,resource starttime Optimaltime for thetaskto begin
Capability boolean task,resource true Whetherresourcehastherequiredskills to performtask
TaskDuration number task,resource 0 How many secondsit takesresourceto performtask
Setup Dura-
tion

number task,previous,
resource

0 How many secondsit takesresourceto prepareto per-
form taskif it lastperformedprevious

WrapupDura-
tion

number task, next, re-
source

0 How many secondsit takes resourceto cleanup after
doingtaskif it will beperformingnext

Prerequisites list of
strings

task empty
list

Namesof all the tasksthat must be scheduledbefore
schedulingtask

Task Unavail-
ability

list of in-
tervals

task,resource,
prerequisites

empty
list

All intervalsof time whentaskcannotbescheduled(la-
bel1andlabel2fieldsignored)

ResourceUn-
availability

list of in-
tervals

resource empty
list

All intervalsof time whenresourceis busy (label1and
label2canbeusedfor text andcolor)

CapacityCon-
tribution

list of
numbers

task 0 How muchtaskcontributestowardsfilling eachtypeof
capacity

Capacity
Threshold

list of
numbers

resource 0 How muchcapacityof eachtypethatresourcehas

Multitasking multiple
choice

N/A none Ability of resourcesto performmorethanonetaskat a
time (none,ungrouped,or grouped)

Groupable boolean task1,task2 false Whethertask1andtask2canbeplacedin thesamegroup

Table1: List of thevariousconstraintsthatcanbespecified

the problemrepresentationframework. We thendescribe
how our schedulerutilizes the information in a problem
representationin order to find an optimizedschedulefor
that problem. We concludewith someresultson the per-
formanceof thescheduler.

2 The Problem RepresentationFramework

A problemrepresentationconsistsof threecomponents:the
metadata,thedata,andtheschedulingsemantics.We now
provideanabbreviateddiscussionof whateachof thesein-
volves.More detailson theproblemrepresentationframe-
work areavailablein [Montana,2001].

Metadata - Our schedulingsystemprovidesa smallnum-
berof atomicdatatypes(string,number, boolean,datetime,
andlist) andpredefinedcompositedatatypes(interval, xy-
coord,latlong,andmatrix). Theuserbuildsnew composite
datatypes(alsocalledobject types) from theseatomicand
predefinedtypes. The datatype for a field can itself be
anotheruser-definedobject,andhencetheusercanpoten-
tially build complex objects.Theusermustspecifyasingle

objecttypefor tasksanda singleobjecttypefor resources.

Data - Most of thedataareinstancesof objecttypesspec-
ified by the metadata.Theremustbe sometaskinstances
to scheduleandsomeresourceinstancesto which to assign
thesetasks.Therecanalsobeotherdata,suchasbusiness
rulesor distancematrices,not associatedwith a particular
taskor resourcebut usedaspart of the schedulinglogic.
Two piecesof datathatarenotobjectinstancesarethestart
andend timesof the “schedulingwindow”, which define
the earliestand latesttime that an assignmentcanoccur.
Other non-objectdatais that specifyingwhich set of as-
signmentsfrom a previouslyproducedscheduleshouldre-
mainfrozenin thecurrentschedulerrun. (This conceptof
freezingis importantfor dynamicrescheduling.)

SchedulingSemantics- We have defineda setof general
constraintsthat definewhat constitutesa legal and opti-
mized schedule. For most of theseconstraints,the user
specifiesa formula that tells how to computethe valueof
the constraintin a given context. For example,the Task
Durationconstrainttells how many secondsit takesa par-
ticular resourceto performaparticulartask.If thisvalueis



obtainedby dividing thedistancefield of thetaskobjectby
the speedfield of the resourceobject,thenthe formula to
specifyfor this constraintis task.distance/ resource.speed.
A descriptionof the mini-languagefor specifyingformu-
lasin givenin [Montana,2001]; theexamplesin Section3
shouldprovide an idea of how theseformulaswork and
whatthey canexpress.

Table1 lists all thedifferentconstraintsfor which theuser
canspecifya formula. If the userdoesnot specifya for-
mula, the default valueis used. The context in which the
constraintis evaluatedis givenby thevalueof thevariables
that are defined. While somevariables(tasks,resources,
starttime,andendtime)aredefinedfor all constraints,some
variables(e.g.,taskandresource)aredefinedonly for cer-
tain constraints.Thedescriptionsprovidedarebrief; Sec-
tion 4 providesabetterunderstandingof someof thesecon-
straintsby describinghow they areactuallyused.

3 Examplesof Problem Specifications

We now describefour examplesof problemspecifications.
Thesewell-known problemsfrom the operationsresearch
literaturearetheproblemsweusedfor theexperimentsde-
scribedin Section5. (TheOR-Library[Beasley, 1990] is a
goodsourceof suchclassicproblems.)We have specified
andsolved problemsmuchmorealgorithmicallycomplex
thanthosegivenhere,but thesehighly idealizedproblems
providea goodintroductionto how to specifya problem.

3.1 Traveling SalesmanProblem(TSP)

Thereis asalesmanwhoneedsto startatagivencity, travel
to a setof othercitiesvisiting eachcity once,andthenre-
turn to thestartingcity. Thedistancefrom any city to any
othercity is provided.Theobjectiveis to minimizethetotal
distancetraveled.

The task object, city, and resourceobject, salesman, are
definedto havethefields:� city - id (string)andindex (number)� salesman- id (string)
Thereis onesalesmanwith arbitraryid;

�
cities with in-

dex = i and id = “City i” for ����� � � � � � � ; andan
�

x
�

matrix nameddistances that containsall the intercity dis-
tances.For theschedulingsemantics,the constraintswith
non-defaultvaluesareshown in Table2.

3.2 VehicleRouting Problemwith Time Windows

This problemis describedin [Solomon,1987]. Thereare
M vehiclesandN customersfrom whomto pick up cargo.
Eachvehicle has a limited capacityfor cargo, and each
pieceof cargo contributesa differentamounttowardsthis
capacity. Thereis a certainwindow of time in which each

Constraint Formula
Optimization
Criterion

maxover (resources,“r”, complete(r))
- starttime

SetupDura-
tion

matentry(distances,task.index, if (has-
value(previous),previous.index, 1))

Prerequisites if (task.id= “City 1”, mapover (tasks,
“t2”, if (t2.id != “City 1”, t2.id)))

Table2: Constraintsfor TravelingSalesmanProblem

Constraint Formula
Optimization
Criterion

sumover (resources,”r”, preptime
(r)) + sumover (tasks, ”t”, if (has-
value(resourcefor(t)), 0, 1000))

Delta Crite-
rion

preptime (resource)- previousdelta
(resource)

TaskDuration extra.servicetime
Setup Dura-
tion

dist (task.location, if (hasvalue
(previous), previous.location, ex-
tra.depotlocation))

WrapupDura-
tion

if (hasvalue (next), 0, dist
(task.location,extra.depotlocation))

Task Unavail-
ability

list (interval (starttime, starttime +
task.earliest), interval (starttime +
task.latest+ extra.servicetime,end-
time))

CapacityCon-
tributions

list (task.load)

Capacity
Thresholds

list (resource.capacity)

Table3: Constraintsfor VehicleRoutingProblem

pickupmustbe initiated,andthepickupsrequirea certain
non-zerotime. Eachvehiclethat is utilized startsat a cen-
tral depot,makes a circuit of all its customers,and then
returnsto thedepot.Theobjective is to minimizethetotal
distancetraveledby thevehicles.

Theproblem-specificobjectsare:� customer- id (string),load(number),earliest(number),
latest(number),andlocation(xycoord)� vehicle- id (string)andcapacity(number)� extradata - servicetime(number) and depotlocation
(xycoord)

The single object of type extradatais namedextra. For
theschedulingsemantics,theconstraintswith non-default
valuesareshown in Table3.

3.3 GeneralizedAssignmentProblem(GAP)

This problemis describein [Osman,1995]. ThereareN
jobsto beassignedto M agents.Therearedefinedassign-
mentcosts,oneassociatedwith eachpairing of a job and



Constraint Formula
Optimization
Criterion

sumover(tasks,“t”, entry(t.costs,re-
sourcefor(t).index))

Optimization
Direction

maximize

Delta Crite-
rion

entry(task.costs,resource.index)

CapacityCon-
tributions

task.loads

Capacity
Thresholds

loop (length (resources),“i”, if (i
= resource.index, resource.capacity,
100000))

Table4: Constraintsfor GeneralizedAssignmentProblem

anagent.Eachagenthasa definedcapacity, andeachjob
contributesa definedamounttowardsthecapacityof each
agent,with this amountdependingon the agent. The ob-
jective is to maximizethetotal costs.

Theproblem-specificobjectsare:	 job - id (string),index (number),costs(list of numbers),
andloads(list of numbers)	 agent - id (string), index (number),andcapacity(num-
ber)

Thecostsfield of eachjob containsonecostfor eachagent,
which canbeaccessedfrom the list usingthe index of the
agent.Thesameappliesto theloadsfield of eachjob. For
theschedulingsemantics,theconstraintswith non-default
valuesareshown in Table4.

3.4 Job-ShopSchedulingProblem(JSSP)

This problem was originally proposedby [Muth and
Thompson,1963]. Thereare M machinesand N manu-
facturingjobsto becompleted.Eachjob hasM steps,with
eachstepcorrespondingto a differentspecifiedmachine.
Thereis a specifiedorder in which the stepsfor a certain
job mustbeperformed,with onestepnot ableto startuntil
thepreviousstephasended.Theobjective is to minimize
theendtimeof thelaststepcompleted.

Theproblem-specificobjectsare:	 step - id (string), duration(number),machine(string),
andpreceedingstep(string)	 machine- id (string)

For the schedulingsemantics,the constraintswith non-
defaultvaluesareshown in Table5.

4 The ReconfigurableScheduler

We have createda schedulerthat is capableof finding an
optimizedsolution for any schedulingproblemspecified
usingtheframework describedabove. A “greedy”, i.e. lo-

Constraint Formula
Optimization
Criterion

maxover (resources,“r”, complete
(r)) - starttime

Capability task.machine= resource.id
TaskDuration task.duration
Prerequisites if (task.preceedingstep!= “”, list

(preceedingstep))
Task Unavail-
ability

mapover (prerequisites,“t”, interval
(starttime,taskendtime(t)))

Table5: Constraintsfor Job-shopSchedulingProblem

Greedy initialization;
Genetic loop:

Determine new task ordering;
Task (greedy) loop:
Find next task to schedule;
Resource (greedy) loop:

Find next capable resource;
Time (greedy) loop:

Search to find best interval
for resource to perform task;

end Time loop;
Check whether this
resource/interval best so far;

end Resource loop;
Assign task to best resource
during best interval;

end Task loop;
Evaluate fitness of schedule;

end Genetic loop;

Figure1: Controlflow of thescheduler

cally optimal,schedulerbuilder takesa particularordering
of tasksandassignsthemoneata time to thebestresource
for that task. A geneticalgorithmgeneratesdifferenttask
orderingsto feedthegreedyschedulebuilder, searchingfor
anoptimalordering.Theoverallcontrolflow of thesched-
uler is shown in Figure1.

4.1 The GeneticAlgorithm

Thegeneticalgorithmis a fairly standardorder-basedone.
We numbereachtask from 1 to N, whereN is the num-
ber of tasks,and a chromosomeis somepermutationof
thenumbers1 throughN. Thecrossoveroperatorweuseis
position-basedcrossover, which is describedin [Syswerda,
1991]. Themutationoperatoris a variationon Syswerda’s
order-basedmutationexceptthat,insteadof selectingonly
two positionswhoseorder to exchange,our mutationse-
lectsbetween2 andN positionswhoseorder is randomly
generatedwhile the otherpositionsremainthe same.The



populationis initializedby choosingrandomorderings.

Thereplacementschemeis steady-stateratherthangenera-
tional,i.e. asinglechild entersthepopulationandtheworst
individual leaves the populationin a single ”generational
cycle”. Duplicateindividualsarenot allowedin thepopu-
lation. Theparentselectionprobabilitiesareexponentially
distributed. The parameterparent-scalaris definedas the
ratioof theprobabilitiesof selectingthe 
 � � bestindividual
andof selectingthe 
 
���� � � � bestindividual.

Thereare four conditionsunderwhich the geneticalgo-
rithm canterminate.First, it will stopif the elapsedwall
time of its current run exceedsa parameter(max-time).
Second,it will terminateif thetotal numberof evaluations
(i.e., individuals generated)exceedsa parameter(max-
evals).Third, it will stopif thebestscorehasnot improved
for a consecutive numberof evaluationsexceedinga pa-
rameter(max-top-dog-age).Fourth,it will terminateif the
numberof duplicateindividuals generatedexceedsa pa-
rameter(max-duplicates).

Evaluation of an individual is done by first feeding the
orderingof the tasksto the greedyschedulebuilder and
letting it build a schedule. The formula given by the
OptimizationCriterion constraintis thenexecutedon this
schedule.Thenumberreturnedby theformulais thechro-
mosome’sfitness.

4.2 The GreedyScheduleBuilder

The algorithm of the greedyschedulebuilder, although
simplein concept,is complicatedby the needto consider
somany differentfactors.For the specialcaseof the job-
shopschedulingproblem,our greedyscheduleris equiva-
lent to the active schedulegenerationalgorithmpresented
in [Giffler andThompson,1960]. However, to handleprob-
lemsotherthanthejob-shopproblem,ourgreedyscheduler
mustconsidera varietyof otherfactorsincluding:� resourceselection- Many schedulingproblemsallow

a choicebetweendifferentqualifiedresourcesfor each
task.� timeselection- For many schedulingproblemsfinishing
ataskearlieris notalwaysbetter, suchasis thecasewith
just-in-timescheduling.� multitasking - Some schedulingproblems allow re-
sourcesto performmorethanonetasksimultaneously.

As shown in Figure1 therearedifferentcomponentsof the
greedyschedulebuilder. We now discusseachof these.

Initialization - There are certain resultsthat the greedy
schedulebuilder needsbut thatdo not vary basedon what
assignmentsare made. For the sake of efficiency, these
arecomputedoncebeforethegeneticalgorithmevenstarts.
Theseresultsinclude:

� Lists of capableresources- For eachtask,it createsa
list of all thoseresourcesthathavetheskills/capabilities
to performthat task. It determineswhethera resource
hasthe requiredskills by executingthe Capability for-
mula with the task variableset to the task and the re-
source variablesetto theresource.� Resource unavailable times - For each resource,it
computesa setof nonoverlappingintervals of time for
which that resourceis not availableto be assignedto a
taskdueto othercommitments(e.g.,timeoff or mainte-
nance).To do this, it executestheResourceUnavailable
Timesformula with the resource variablesetappropri-
ately to obtaina preliminarysetof intervals. It addsto
this list theintervalsthatrepresenttheconstraintthatre-
sourcesshouldnot bescheduledbeforethestartor after
theendof theschedulingwindow of thewindow. Then,
it resolvestheseinto asetof nonoverlappingintervals.� Capacity contributions - For eachtask,it computesthe
task’scontribution towardseachof thecapacitiesby ex-
ecutingtheCapacityContributionsformulawith thetask
variablesetappropriately. The 
 � � elementof the list is
thecontribution to the 
 � � capacity.� Capacity thr esholds- For eachresource,it computes
theresource’s thresholdfor eachof thecapacitiesusing
theCapacityThresholdsformula.� Prerequisites - For eachtask, it computesthe set of
othertasksthatmustbe scheduledprior to this taskre-
gardlessof theorderingof tasksprovidedby thegenetic
algorithm. The Prerequisitesformula providesa list of
tasknames,which areusedto look up thetaskobjects.

Task Loop - Thegreedyschedulebuilder assignsonetask
at a time. It attemptsto adhereasmuchaspossibleto the
orderin thechromosome,but it will notscheduleataskbe-
fore its prerequisiteshave beenscheduled.So, eachtime
throughthe loop it picks the taskearliestin the chromo-
somethathasnot yet beenscheduledbut all of whosepre-
requisitetaskshave beenscheduled.After executingthe
resourceloop in orderto find thebestresourceandtime, it
assignsthetaskto that resourceat that time. If thereis no
resourcethat is capableandavailableto performthe task,
thenthetaskis markedasunassigned.

Theassignmentprocessinvolvesthefollowing steps.First,
the taskmustbe insertedinto the resource’s schedule.If
theMultitaskingselectionis groupedandtheresourceloop
hasspecifieda particulargroupfor the task,thenthe task
is placedin this group.Otherwise,a new scheduleentry is
madefor this taskandresourcewith setupstarttime, task
starttime, taskendtime,andwrapupendtime asspecified
from theresourceloop. (Thetime interval associatedwith
a task assignmentis divided into threeconsecutive inter-
vals: the setupinterval whenthe resourceis preparingto
performthe task,the taskinterval whenthe resourceper-
forms thetask,andthewrapupinterval whentheresource



cleansup. Thefour timesrepresenttheboundariesof these
threeintervals.) Thewrapupendtime of theprevioustask
in the resource’s scheduleand the setupstart time of the
next taskarealsoupdatedif necessaryasspecifiedby the
resourceloop. If thereis groupedmultitasking,thena new
entryis alsoa new group.

Next, thecapacitiesareupdated.If theMultitaskingselec-
tion is none,the capacitiesaresingleaggregatessummed
over time, andthe capacitiesusedby the resourceareup-
datedby addingthe capacitycontributionsfrom the task.
Otherwise,the capacitiesare time histories,and they are
updatedaccordingly.

ResourceLoop - To find thebestresourceandinterval of
time to which to assigna given task,the greedyschedule
builderexamineseachresourceonthetask’s list of capable
resources.For a givenresource,it startsby computing,us-
ing theBestTime formula,theideal time for thetaskstart
time. This is asoft constraintthattells thetime loopwhere
to startits search.It alsocomputestwo hardconstraintson
time,thetaskdurationandthetaskunavailabletimes,using
the correspondingformulas. It thenusesthe time loop to
searchforwardfrom thebesttime for thenearestlegal task
starttime,wherea time is legal if� the resourceis availablefor the entire interval between

thecorrespondingsetupstarttimeandwrapupendtime,
andthetaskis availablebetweenthetaskstarttime and
thecorrespondingtaskendtime� the setupstart time for the task is not earlier than the
wrapup end time from the previous task for that re-
source,andthewrapupendtime of the taskis not later
thanthesetupstarttimeof thenext task� noneof theaggregatecapacitycontributionsexceedtheir
correspondingcapacitythresholds

Alternatively, if thereis groupedmultitasking,thena task
starttime is legal if it is the taskstarttime for anexisting
groupsuchthat� its taskdurationis nolongerthanthetaskdurationof the

group� the aggregatecapacitycontributionsof the groupafter
addingthetaskdo not exceedany capacitythresholds� executingtheGroupableformulafor this taskanda task
alreadyin thegroupreturnstrue

If the forward searchyields a legal time, then it makes
a temporaryassignmentof the task to the resourceat the
specifiedtime,andevaluatestheDeltaCriterionformulato
obtaina fastmeasureof how goodthatassignmentwould
be. If the forward searchyields no time or a time which
is not the besttime, then it repeatsthe process,this time
searchingbackwardfrom thebesttimefor theclosestlegal
starttime. If neithertheforwardor backwardsearchyields
a time, then the taskcannotbe assignedto this resource.
If the forwardandbackwardsearchbothyield times,then

it picks theonewith thebestdeltacriterion. Theresource
(andtime) with the bestdeltacriterion is selectedfor as-
signment.

Time Loop - Whenperformingthesearchfor thelegaltask
start time closestto the best time, thereare a few items
aboutwhich to be careful. First, the setupandwraupdu-
rationsdependrespectively on the previous andnext task
in the resource’s schedule.Hence,they canonly be com-
putedin the context of a proposedpositionof the taskin
the resource’s schedule.Additionally, the previous task’s
wrapuptime andnext task’s setuptime (if thesetasksex-
ist) arepotentiallyalteredby theplacementof thenew task
andmustthereforeberecomputed.All thesequantitiesare
storedalongwith thetaskstarttime to allow thetaskloop
to maketheassignment.A seconditemto becarefulabout
is that this is the innermostloop andhenceis executedthe
mostfrequently. Therefore,it needsto beparticularlyeffi-
cient.

5 Experimental Results

Thedatafor which we have executedour experimentsare
instancesof the problemsgiven in Section3. Theseare
commonlystudiedproblemsthat we usebecausethey al-
low comparisonwith other algorithms. We cannothope
to matchtheperformanceof thebestalgorithmsdeveloped
for theseproblemsfor two reasons.First, we do not tune
our algorithmto any particularproblemandthereforewill
generallynot achieve optimalperformancefor a particular
problem. Second,the formulasarenot compileddirectly
into machinecodebut ratherareinterpreted,andhencethey
executelessefficiently thancompiledcode. However, the
benefitof ourapproachis thewiderangeof problemsit can
handleandtheeasewith whichit canhandlenew problems,
soweonly needto provereasonablygood,notoptimal,per-
formance.

For eachexperiment,wehaveselecteda particulardataset
anda particularset of geneticalgorithm parameters,and
we have madeten geneticschedulerruns. Table 6 sum-
marizestheresultsof theseexperiments.Notethatfor each
experiment,Table6 tells thekey geneticalgorithmparame-
ters:populationsize,parent-scalar, andeithermax-evalsor
max-top-dog-age(dependingon which actuallycausedall
theterminations).Thetablealsogivesthefollowing results
from theexperiments:� BestKnown Score- thescoreof eithertheprovablybest

solutionor the bestsolutionfound by any algorithmto
date(usedasareference)� BestScore- the scoreof the bestsolutionfrom all ten
runs� MedianScore- themedianof thescoresof thetensolu-
tionsfoundby thetenruns� AverageScore- themeanof thescoresfrom thetenruns



� AverageNumberof Evaluations- theaveragenumberof
individualsevaluatedin a run beforetherun terminated
(becausethe geneticalgorithmis steady-state,this is a
bettermeasurethanthenumberof generations)� AverageTime PerRun - the averageamountof time it
requireda run to executeto completion� Time PerEvaluation- the averagenumberof millisec-
ondsrequiredto performa singleevaluation

All therunsweremadeon a 200MHz UltraSparcproces-
sor.

For the traveling salesmanproblem,we have so far used
a single instance,bays29,which is a 29-city symmetric
problemavailableat the TSPLIB web site. The first two
rows in Table6 correspondto two setsof runsfor this data
with differentgeneticalgorithmparameters.Thefirst row
hasa largerpopulation,proportionatelylower fitnesspres-
surefrom parent-scalaranda larger max-top-dog-age.It
doeswell at finding nearlyoptimal solution. The second
row runs fasterbut doesnot do as well. This illustrates
the tradeoff betweensearchtime andquality of solution.
(A third factorin the tradeoff is computationalpower and
its cost,particularlywith aninherentlyparallelizablealgo-
rithmsuchasageneticalgorithm.)Thisisarelativelysmall
traveling salesmanproblem, and while we could practi-
cally do significantlybiggerproblems,this algorithmcan-
not competewith specially designedalgorithmssuch as
[Lin andKernighan,1973].

For the job-shopschedulingproblem,we have so far used
only theMuth-Thompson6x6 data[Muth andThompson,
1963], referredto as ft06 at the OR-Library web site. It
contains36 tasksand6 resources.Despitethefactthatthis
is largerthanthetravelingsalesmanproblem,thescheduler
clearlyhasaneasiertime with the job-shopproblem.The
time per evaluationis roughly the sameeven thoughthe
job-shopproblemhasmoreresourcesbecausethejob-shop
problemhasonly onecapableresourcepertask,andthatis
a bettermeasureof thecomputationrequired.Thejobshop
problemrequireslessevaluationsto find theoptimalsolu-
tion becausethe searchspaceis in practicesmaller. This
is becausethe constraintsin the job-shopproblem, par-
ticularly theprerequisitesconstraint,make it so thatmany
differentchromosomesdecodeto thesameschedule.One
lessonis that onecannotpredict the searchtime required
purelybasedon thenumberof tasksandresources.

The generalizedassignmentproblem is so far the only
problem for which we have experimentedwith multiple
instances.From the OR-Library web site, we have used
c515-1(5 resourcesand15 tasks),c530-1(5 resourcesand
30 tasks),andc1030-1(10 resourcesand30 tasks). This
hasalloweda very preliminaryexaminationof thescaling
propertiesof our algorithm.We would expectthetime per
evaluationto beroughlyproportionalto theproductof the

numberof tasksandthe numberof capableresourcesper
task(whichin thiscaseis thenumberof resources),andthis
is thecasefor this data.We would alsoexpectanincrease
in the numberof evaluationsrequiredwith an increasein
thenumberof tasksdueto thelargersearchspace,andthis
is alsoborneout by the data. Overall, theseproblemsare
solvedquickly becausethegreedyalgorithmdoesmostof
thework. Oneinterestingresultis thatwhile thealgorithm
cangetcloseto theoptimalsolutionfor c530-1quickly, it
requiresa longsearchto find thebestsolution.

Thenext logical stepfor theexperimentationprocessis to
perform the sameexperimentsfor larger searchproblem
suchas the Muth-Thompson10x10 job-shopproblemor
theSolomonvehicleroutingproblems.

6 Conclusionsand Future Work

We have developeda powerful framework for represent-
ing schedulingproblems,and we have built a reconfig-
urable schedulerthat can find an optimized solution for
any problemspecifiedin this framework. The optimiza-
tion performanceof this scheduleris good, even though
the generalityof our approachdoesmeanthat, for certain
problems,we cannotacheive the performancea scheduler
designedspecificallyfor that problem. The major benefit
of reconfigurabilityis that it makesdevelopmentof opti-
mizedschedulingfor a wide rangeof problemssimpleand
inexpensive. Thereis a vastarrayof schedulingproblems
that are currently solved using manualor non-optimized
scheduling,and for mostof theseproblemsmakingopti-
mizedschedulingpracticalrequiresa simpleandinexpen-
sivesolutionratherthanthebestpossibleperformance.

Further enhancingthe easeof useof our reconfigurable
scheduleris a web-basedsystemwehavebuilt to allow the
userto interactwith thescheduler. Thedetailsof this inter-
facearebeyondthescopeof thispaper, but in generalterms
thebrowser-basedinterfaceallows theuserto fully specify
aproblem(metadata,data,andschedulingsemantics),start
a new schedulerrunandcheckon its progress,andgraphi-
cally view theschedules.Usingdisplayconstraintssimilar
to theschedulingconstraintsdescribedin Section2 allows
the userto selectthe colorsandtext to displaywith each
assignment.

Also beyondthescopeof this paperbut illustratingthead-
vantagesof reconfigurability,wehaveintegratedourrecon-
figurableschedulerinto thesamemultiagentinfrastructure
asdescribedin [Montanaet al., 2000]. Thishasallowedus
to build multiagentsocietiesthathaveincludedmultiple in-
teractingreconfigurableschedulingagentsaswell asother
typesof agents.

Thereare two directionsin which to extendour work on
thereconfigurablescheduler. First,aswe expandtheprob-



Problem
Name

Pop
Size

Parent
Scalar

Max
Evals

Max
Top
Dog

Best
Known
Score

Best
Score

Median
Score

Avg
Score

Avg
Num
Evals

Avg
Time
(M:S)

Msecs
Per
Eval

TSP-bays29 5000 0.998 N/A 20000 2020 2028 2028 2042 134,429 13:25 5.99
TSP-bays29 1000 0.99 N/A 4000 2020 2058 2204 2191 26,680 2:41 6.02
JSSP-mt06 1000 0.99 5000 N/A 55 55 55 55 5000 0:54 10.9
GAP-c515-1 500 0.98 2500 N/A 336 336 336 336 2500 0:09 3.48
GAP-c1030-1 1000 0.99 8000 N/A 709 709 709 708.8 8000 1:31 11.4
GAP-c530-1 1000 0.99 5000 N/A 656 655 653 653.3 5000 0:39 7.88
GAP-c530-1 20000 0.9995 100000 N/A 656 656 656 655.3 100000 14:10 8.50

Table6: Summaryof experimentalresults

lem representation,we needto extend the schedulerca-
pabilitiesto match. Currently, the problemrepresentation
framework doesnot allow certainconceptssuchasreset-
tablecapacities(e.g., the ability to emptya load) or mul-
tiple resourcesper task. Whenwe put theseinto theprob-
lem representation,the scheduleralgorithmneedsto han-
dle them. Second,we shouldmake the schedulersmarter
abouthandlingspecialcases.If the schedulercould rec-
ognizespecialcases,then it could apply special-purpose,
higher-performancealgorithmsfor thesecases.Thiswould
improvetheperformanceof theschedulerwithout sacrific-
ing its generality.
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