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Abstract. A PKI in support of secure Internet routing was first pro-
posed in [1] and refined in later papers, e.g., [2]. In this “Resource”
PKI (RPKI) the resources managed are IP address allocations and Au-
tonomous System number assignments. In a typical PKI the validation
problem for each relying party is fairly simple in principle, and is well
defined in the standards, e.g. RFC 3280 [3]. The RPKI presents a very
different challenge for relying parties with regard to efficient certificate
validation. In the RPKI every relying party needs to validate every cer-
tificate at fairly frequent intervals (e.g., daily). In addition, certificates
on the validation path may be acquired from multiple repositories in
an arbitrary order. These dramatic differences motivated us to develop
performance-optimized validation algorithms for the RPKI. This paper
describes the software developed by BBN for the RPKI, with a special
focus on this optimized validation approach.
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1 Background

The Border Gateway Protocol (BGP) [4] is a critical routing protocol in the In-
ternet. Routers exchange Autonomous System (AS) path information between
themselves using BPG UPDATE messages. Unfortunately the current implemen-
tation of the BGP protocol does not provide any method for determining if such
path information is valid. Path information may be invalid due to configuration
errors, or, due to malicious BGP spoofing [5, 6].

Several proposed alterations to BGP provide for additional security to the
path information [7, 8, 9, 10, 11]. All are predicated upon the existence of some
form of PKI that binds AS# and IP-address block resources to the entities to
which they have been allocated. These proposals have not been adopted due to
the changes required to routers and the infrastructure requirements imposed.
The most recent proposal for creating the requisite infrastructure is described in
[1], an approach based on a new, digitally signed object, the Route Origination
Attestation (ROA), together with a PKI to validate, manage and process such
objects. Relying party software for use with this “Resource” PKI (RPKI) was
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implemented by BBN, and is described in this paper. Of particular interest is
the set of validation algorithms that were developed for the RPKI.

In a typical PKI [12] the validation problem for each relying party is fairly
simple in concept, although it may be complex in practice. Typically a relying
party receives an End Entity (EE) certificate which must be validated prior to
verifying the signature on an object. The relying party may be provided with
additional Certificate Authority (CA) certificates needed to complete the certifi-
cate path to one or more Trust Anchors (TA) employed by that relying party.
The validation of a certification path from a TA to a EE certificate, including
processing of revocation status data, is well defined specified in standards. The
non-standard part of the process is the discovery of a suitable certificate path.

Given this typical task for a relying party, strategies for optimizing the per-
formance of certificate validation have been developed. They are based on the
assumption that a relying party will, within a reasonable time interval (say, 24
hours), validate only a very small fraction of all the certificates issued in the
context of the specific PKI. This is a reasonable assumption for most PKI ap-
plications, e.g., secure email provided via S-MIME, VPN security using IPsec,
or secure web access via TLS/SSL [13].

The RPKI presents a very different challenge for relying parties with regard to
certificate validation. In this RPKI it is anticipated that every relying party (e.g.,
every participating ISP) will need to validate every certificate within (roughly) a
24 hour interval. This dramatic difference in validation methodology motivated
the development of a novel performance-optimized approach to certificate val-
idation. This paper focuses on the validation algorithms developed as part of
our work on implemented the RPKI. Our approach to validation makes use of
a relational database containing only validated signed objects (e.g., certificates)
to avoid duplicative validation processing.

2 RPKI Software

The goal of the BBN RPKI (relying party) software is to process data from
repositories operated by the five RIRs (and their subordinate certification au-
thorities) in order to create a single set of text files that can be used to generate
BGP filters. These filters describe which Autonomous Systems are authorized
to originate routes for specified IP address prefixes. The BBN RPKI software
system finds all the available ROAs, and their associated certificates and cer-
tificate revocation lists (CRLs), verifies the ROAs using these certificates and
CRLs, and creates simple text files containing AS#/IP prefix pairs that can be
used to create BGP filters.

As noted above, this process is different from the traditional use of a PKI to
support applications. Previously, an application received one or a small number
of signed objects that required validation. The application would gather the cer-
tificates required to form a certificate chain to a Trust Anchor and then perform
the appropriate certificate path checks. Our application needs to determine the
validity of all the available ROAs, certificates and CRLs across multiple repos-
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itories. To do this quickly and with efficient use of system resources requires
a different approach than that of PKI software supporting a traditional appli-
cation, since it will require processing the same certificates and CRLs many
times. Therefore, our software extracts relevant information from local copies of
certificates and CRLs, and creates relational database records containing that
information. This approach provides a simple, efficient, and highly structured
way to access the applicable information for each object without having to re-
peatedly acquire and process certificate and CRL data. We first discusses how
the data is stored locally, and then describes the different programs that operate
on the data and transform it, eventually resulting in output files that can be
used to create BGP filters.

Our software suite consists of a set of programs that typically run continu-
ously, in the background, rather than a set of programs that are executed once
from the command line. This is done for the sake of efficiency; as the ROA’s
validation state changes over time; our software updates files incrementally, so
as not to require reprocessing all the data.

rsync load prune translate
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Fig. 1. Transforming the data

The different forms of the data and the transformations between them are
shown in Figure 1. We now describe each component in the process.

Remote Repositories - The raw data (certificates, CRLs, and ROAs) are
stored as files on a distributed system of servers provided by the CAs that
comprise the RPKI. Each of the five RIRs will attempt to cache data from its
subordinate CAs on its repository server, so it is expected that our software will
be able to find most of the data it needs on the RIR servers. However, there
will be some cases where the data is not cached at a RIR and the application
will need to retrieve data directly from a subordinate CA repository. Data from
these repositories can be located using the Subject Information Access (SIA)
extensions present in RPKI certificates [14].
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Local Repository - Our application retrieves files from repository servers
and caches them locally. It uses rsync, an existing freely available utility, to keep
the local repository synchronized with the remote repositories in a directory
structure that mirrors the originals. Because most of the files retrieved from
the remote repositories will need to be accessed many times as part of ongoing
processing, it is more efficient to copy these files once (particularly with the
efficient copying of rsync) rather than to continually access the remote versions.
Furthermore, rsync outputs a record of what changes occurred in which files,
which allows our application to process only the modifications, and thereby
minimize the work done with each incremental data update.

Relational Database - MySQL [15] was used as the relational database
underpinning our relying party software. The database has three main tables,
one for each type of object of interest: certificates, CRLs and ROAs. Each object
type has a different set of data fields in addition to its signature. The database
includes only those fields required to search for and/or identify the different
objects/rows in the tables. (It is easier and more efficient to leave seldom-used
information in the corresponding file.) For example, some of the fields included
in the certificate table are: subject key identifier (SKI), subject, authority key
identifier (AKI), and issuer. This supports an SQL query requesting the certifi-
cate with a particular SKI and subject, or a query requesting all certificates with
a particular AKI and issuer. (The significance of these queries is discussed in the
section on validation algorithms.) Such database queries allow rapid location of
objects of interest.

The database does not include all objects. If an object has been determined
to be invalid, that object is either not loaded into the database, or is deleted
from the database if it had previously been valid or awaiting validation. Note
that the underlying file remains in the local repository until its remote copy has
been deleted. (Henceforth we will always use the term “repository” to denote
the local collection of files, unless otherwise noted.) An object can be determined
invalid for a variety of reasons including expiration, revocation or a signature
that does not verify. An object will be placed into the database if it is valid, or if
there is not yet enough information to determine whether or not it is valid. The
most common reason for an inability to determine an objects validity is when
there is a missing link (ancestor) in the certificate path to a Trust Anchor. An
object of undetermined validity stays in the database until it expires (and hence
is know to be invalid) or it is deleted from its remote repository (and hence also
from the local repository).

There is one column in each object table containing the validation state.
This field can have three possible values: validated, awaiting-validation, and
CRL-stale. Validated and awaiting-validation represent the obvious meanings;
CRL-stale is explained next. Each CRL has a field next-update that tells the
latest time to expect an updated version of the CRL, which may enumerate a
potentially different set of revoked certificates. When the current time becomes
later than the next-update time for a CRL, then any sibling certificate of this
CRL (i.e., any certificate that shares the same issuer and hence could be revoked,
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as discussed below) enters an uncertain state. This uncertain validity extends
to all its descendants, i.e., those certificates and ROAs whose certification path
includes this certificate. All sibling certificates and descendants have their vali-
dation state set to CRL-stale until the expected update to the CRL arrives.

BGP output files - The goal of the application is to derive this set of files,
which are just text files consisting of IP address prefixes and their associated AS
numbers. These pairs are specified in the ROAs and our software accumulates
the pairs from all validated ROAs. An issue is what to do with those ROAs
in the CRL-stale validation state. The application provides the user with three
options: include them, exclude them, or put their pairs in a separate table/file
where a human can decide how to handle them. (This last option is the default.)

The software is composed of a set of application programs that operate on
the data. There is a natural sequential order to these programs which mostly
follows the sequence of data transformations shown in Figure 1. Typically, one
would expect them to be run in sequence at least once a day. However, there may
be times when the programs need to be run separately, which is also possible.
The program components are described next.

Synchronizer - This program executes rsync for each of the five top-level
RIR repositories in order to create a local repository copy that contains the
same data as the remote repositories. The program rsync is an open-source util-
ity that efficiently synchronizes files and directories between two systems. The
local repository has at least five parallel subtrees, one for each of the remote
repositories. The synchronizer can synchronize with remote repositories other
than these five main ones and generate additional subtrees if it is known be-
forehand (or discovered subsequently) that the data from some RPKI CAs is
not cached at one of the five RIRs. The rsync program outputs messages about
everything it does, including all files that it has added, updated or removed; the
synchronizer saves this output to a log file to tell the loader which files need to
be handled.

Loader - This program looks at the logs generated by the synchronizer and
loads the data from all new or modified files into the database; it also deletes
the data corresponding to those files that have been removed. Before the loader
puts a record corresponding to a new object into the database it checks whether
this object is invalid and refrains from loading such files. If the object can be
validated, it sets the validation flag for that object, and then determines which
other objects already in the database need to have their validation state changed,
or need to be deleted, as a consequence. This process of validating an object and
then determining the effects of this change on other objects in the database is
discussed in detail in Section 3. When there are multiple remote repositories,
the loader is executed in parallel with the synchronizer. After the synchronizer
is done updating from one repository and has proceeded to a second repository,
the loader can be loading the data from the first repository. Because both the
synchronizer and loader spend much of their time doing input/output, parallel
execution provides true speedup.
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Pruner - This program looks for changes in the state of objects due to
the passage of time, in particular certificates and CRLs that have expired (but
which were valid at the time they were loaded). Finding expired objects in the
database is easy, requiring only two database queries, one for certificates and one
for CRLs. Propagating the effects of an expired certificate follows the process
described in Section 3.

Chaser - This program is invoked when not all the certificates are cached at
the RIR repositories, and hence accumulating all the required data necessitates
retrieving data from lower-level CA repositories. Each certificate has a field that
points to the location of its parent (the Authority Information Access or ATA),
one pointing to sibling certificates (the Subject Information Access or SIA), and
one pointing the CRL in which the certificate will be listed if revoked (the CRL
Distribution Points or CRLDP). The chaser accumulates a list of alternative
repositories from which to retrieve data and executes the synchronizer and loader
on these repositories in the same way they are initially executed on the RIR
repositories. Currently there is no way to check which objects from these lower-
level repositories have already been cached by an RIR. In this case those objects
will already have been copied and processed locally. When the duplicates are
copied from a lower level CA repository, the fact that it they are duplicates will
be noted, and they will not be entered into the database twice.

Translator - This utility creates the BGP filter files. The primary content
of a ROA is a mapping from IP address prefixes to AS numbers; the translator
combines the data from all the validated ROAs into a single large list. Note that
the translator is part of a more general query tool for extracting information
from the database, which allows easy visibility into the database for the expert
user.

BBN has developed, integrated, tested, and released this software as a free,
open source project. It may be downloaded from [16].

Work on the software is ongoing. In particular, the evolution of the resource
certificate project [17] has grown to encompass a new type of object: a file man-
ifest. BBN is currently working on extensions to the RPKI software to process
manifests, as well as integrating them into the overall database architecture. (A
manifest is a list signed by an EE representing a CA, enumerating all of the
files currently published under that CA. The manifest will be used to detect
unauthorized deletion or substitution of (older, valid) files in a repository.) BBN
also plans to continue work on improving the efficiency of the software suite. As
described below, there are cases in which caching a previously computed vali-
dation result can result in a significant performance improvement. In addition,
the chaser (and the entire rsync transfer process) can be made more efficient by
adding a mechanism for determining which objects in which repositories have
already been retrieved, so that duplicate files are transferred less frequently. A
number of other performance optimizations are also being considered. Finally,
as standards for secure internet routing continue to evolve [18], we anticipate
that the RPKI software will continue to be improved to track those changes.
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3 Validation Algorithms

The process of keeping the (local) database current with respect to the validation
state of all objects (certificates, CRLs, and ROAs) has two main parts. The first
is validating or invalidating individual objects. The second is propagating the
consequences of an object’s change of validation state throughout the database.
We discuss each of these steps, in turn, after providing a quick overview of the
various objects relationships.

The primary relationship between objects is the parent-child relationship.
The parent object is always a certificate. If the child is a certificate or a CRL,
the parent is the certificate of the CA that signed the child. For a ROA or a
manifest, the parent is an EE certificate. Hence, a parent certificate is required
to validate an object. For the signature to be acceptable, the parent must itself
be validated, and so a certification path is required back to a Trust Anchor. A
Trust Anchor is a self-signed certificate that is inherently trusted; the default
Trust Anchors in the RPKI are self-signed certificates issued by the RIRs and
by TANA.

The parent-child relationship between two objects is dictated by two simple
rules:

— A certificate is the parent of another certificate or of a CRL if the parent’s
SKI equals the child’s AKI and the parent’s subject equals the child’s issuer.

— A certificate is the parent of a ROA (or a manifest) if the two objects have
the same SKI.

The sibling relationship between CRLs and certificates is also important,
because a CRL can revoke any certificate that is its sibling, i.e., has the same
parent. A certificate is the sibling of a CRL if the two objects have the same
AKI. A validated CRL revokes a sibling certificate if the serial number of the
certificate is in the list of serial numbers of the CRL.

Having a relational database makes it easy and fast to find objects that satisfy
these relationships. For example, the following single SQL query produces all the
certificates that are the children of a certificate with SKI=foo and subject=Dbar:

SELECT id, ski, subject FROM certificates WHERE aki="foo” AND is-
suer="bar”;

We now discuss the different ways that an object can change its state as part
of single object validation. These are changes in validation state that are not the
result of some other object changing state. Such initial events can potentially
start a chain reaction of validation state updates.

When the loader acquires a new or modified object, because the synchronizer
has added or modified a file in the local repository, it performs a set of checks
to determine if it should create an object corresponding to that file and add it
to the database. The loader performs the following checks:

— If the syntax of the object does not follow the specifications for that type of
object, the object is not added to the database.
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— If the object is a certificate or ROA and has expired, it is not added to the
database.

— If a certificate is revoked by a validated CRL already present in the database,
then the certificate is not added to the database.

Before loading an object into the database, the loader queries the database
to determine if a validated parent of the object is present. If no such parent
exists, the object is written to the database and put in the awaiting-validation
state, for subsequent processing by the deferred validation algorithm, described
below. If a validated parent does exist, then the object can be tested against a
potential certification path. If the parent’s key validates the object’s signature,
then the object is added to the database and marked as validated, potentially
starting a chain of validation updates as described in the next section. If the
parent’s public key is inconsistent with the object’s signature, then the object is
not added to the database.

If the synchronizer removes a file that corresponds to an object that is still
in the database, the loader removes the corresponding object from the database.
This can possibly start a chain of validation updates. If the pruner determines
that a ROA or certificate has expired, it deletes the object from the database.
When a certificate is deleted, this can potentially start a chain of validation
updates. If a CRL expires, then the CRL is placed in the CRL-stale validation
state, and this can also start a chain of updates.

Note that once a potential path to a Trust Anchor exists, the actual valida-
tion of certificates and CRLs is done using existing publicly available software
(OpenSSL [19] and cryptlib [20]) that performs the certification path validation
checks and verifies the signatures all the way back to the Trust Anchor. An
approach that cached the validation state could offer a potential performance
improvement, since all but the final link in the chain has already been validated
at that point. Note that this potential inefficiency does not exist for ROAs, since
we had to write custom code to validate them.

When an object changes validation state this change can propagate through
the database. Because of the need for certification path validation, a new cer-
tificate being validated or invalidated can ripple to its descendants, i.e. all those
objects that use the certificate as part of the path used to determine its own
validation state. The algorithms for propagating validation state efficiently and
incrementally, including the deferred validation algorithm, are described below.

There are four conditions that can lead to propagation of validation state
through the database. These conditions along with the actions they require are:

1. If a certificate moves from the awaiting-validation state to the validated
state, then all of its children are tested to see whether they are now valid.
(Note that the certificate cannot even reach the awaiting-validation state
unless syntax checks on the certificate have already been successfully per-
formed; therefore the checking being refer to here has to do with signature
verification only.) Generally, these children will be in the awaiting-validation
state until the missing parent is validated. Testing the signature of a child
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against the newly valid parent’s key either proves the child valid, and hence
changes its state to validated, or proves it invalid, and causes it to be removed
from the database

2. If a previously valid certificate is deleted or invalidated, then each of its child
objects is declared invalid unless the child object has been re-parented by
another certificate (during key rollover, for example). If the parent is deleted
or its new state is awaiting-validation, then the state of each child is modified
to be awaiting-validation. If the parent’s state is CRL-stale, then the state
of each child is modified to be CRL-stale.

3. If a CRL is validated, then each of its sibling certificates is tested to see if
its serial number is in the CRL’s list of revoked certificates, and if so, the
certificate is revoked. If the newly valid CRL replaces one that is stale, then
each of its sibling certificates should be removed from the CRL-stale state.

4. If a validated CRL becomes stale, its sibling certificates are placed in the
CRL-stale state.

Conditions 1 and 2 constitute the core of the deferred validation algorithm. In
a typical PKI path discovery propagates upward, from a child object to its parent
objects. In the RPKI, path discovery propagates downward, from a parent object
to its children, when new objects arrive. This type of validation is essential for the
operation of the RPKI, since ultimately all objects must either be validated or
invalidated, even though their order of arrival in the local repository is completely
arbitrary. These operations are complicated by the fact that objects can interact
with one another. We provide an example scenario of such propagation below.

Type | ID | SKI | AKI | Serial # | Expires | Validation State
Cert 1 | AB:00 | AB:00 123 31-DEC Validated
Cert 2 | 13:B5 | C1:8D 2 01-FEB Awaiting
Cert 3 | EE:23 | C1:8D 345 01-FEB Awaiting
Cert 4 | 7D:62 | 13:B5 3 01-FEB Awaiting
Cert 5 | 28:2C | EE:23 7 15-JAN Awaiting
ROA | 1 | EE:23 01-FEB Awaiting
ROA | 2 | 28:2C 01-FEB Awaiting

Table 1. Initial state of example data on 01-JAN

The following scenario contains far fewer objects than would be in a real
system, with the quantity of objects limited for the purposes of illustration.
However, it is otherwise realistic, and is similar to scenarios we used for initial
tests of our software. The initial state of the database is provided in Table 1. It
does not show all the database fields, just those critical to determining validation
state propagation. Certificate 1 is the single Trust Anchor and initially is also
the only validated object, since the others do not yet have a certification path
back to the Trust Anchor.
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Type | ID | SKI | AKI | Serial # | Expires | Validation State
Cert 1 | AB:00 | AB:00 123 31-DEC Validated
Cert 2 13:B5 | C1:8D 2 01-FEB Validated
Cert 3 | EE:23 | C1:8D 345 01-FEB Validated
Cert 4 | 7D:62 | 13:B5 3 01-FEB Validated
Cert 5 | 28:2C | EE:23 7 15-JAN Validated
ROA 1 | EE:23 01-FEB Validated
ROA 2 | 28:2C 01-FEB Validated
Cert 6 | C1:8D | AB:00 23 01-FEB Validated

Table 2. Missing link in trust chains arrives on 02-JAN

Table 2 shows the state after a new certificate arrives. This certificate provides
the missing link in the certification paths for all the objects. Using the deferred
validation algorithm described earlier, the validation state propagates from the

new certificate first to its children and then to their children and so on.

Type | ID | SKI | AKI | Serial # | Expires | Validation State
Cert 1 | AB:00 | AB:00 123 31-DEC Validated
Cert 2 | 13:B5 | C1:8D 2 01-FEB Validated
Cert 3 | EE:23 | C1:8D 345 01-FEB Validated
Cert 4 | 7D:62 | 13:B5 3 01-FEB Validated
ROA | 1 | EE:23 01-FEB Validated
ROA | 2 | 28:2C 01-FEB Awaiting
Cert 6 | C1:8D | AB:00 23 01-FEB Validated

Table 3. Certificate 5 expires and its child ROA is invalidated on 15-JAN

Table 3 shows the state after certificate 5 expires. Certificate 5 is deleted from
the database, and its child, ROA 2, is invalidated and placed in the awaiting-
validation state.

Table 4 shows the state after a CRL arrives. This causes one of its sibling
certificates, certificate 2, to be revoked, and its child, certificate 4, to be placed
in the awaiting-validation state.

Table 5 shows the state after CRL 1 expires. Certificate 3 is a sibling of
CRL 1 and is therefore placed in the CRL-stale state. This propagates to its
child, ROA 1, which is also placed in this state.

4 Testing and Experimentation

While large-scale testing and experimentation with the application has been
limited, we have been able to do some testing with real data. The RIRs have
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Type | ID | SKI | AKI | Serial # | Expires | Validation State
Cert 1 | AB:00 | AB:00 123 31-DEC Validated
Cert 3 | EE:23 | C1:8D 345 01-FEB Validated
Cert 4 | 7D:62 | 13:B5 3 01-FEB Awaiting
ROA 1 | EE:23 01-FEB Validated
ROA | 2 | 28:2C 01-FEB Awaiting
Cert 6 | C1:8D | AB:00 23 01-FEB Validated
CRL 1 C1:8D 2,33 20-JAN Validated

11

Table 4. CRL 1 arrives on 16-JAN, revoking certificate 2 and invalidating its child.

Type | ID | SKI | AKI | Serial # | Expires | Validation State
Cert 1 | AB:00 | AB:00 123 31-DEC Validated
Cert 3 | EE:23 | C1:8D 345 01-FEB CRL-stale
Cert 4 | 7D:62 | 13:B5 3 01-FEB Awaiting
ROA 1 | EE:23 01-FEB CRL-stale
ROA | 2 | 28:2C 01-FEB Awaiting
Cert 6 | C1:8D | AB:00 23 01-FEB Validated
CRL 1 C1:8D 2,33 20-JAN CRL-stale

Table 5. CRL 1 expires on 20-JAN, causing other objects to enter the CRL-stale state.

cooperated to supply data in order to test our software. All certificates and
CRLs from the five RIRs and their subordinates have been cached on a single
server, with the cache updated intermittently. Noticeably absent from this data
are any ROAs, since ROAs are objects that have only recently been defined
and therefore are not currently used by ISPs as a means to express origin AS
authorization. Therefore we have generated our own ROAs in compliance with
the current specification [21].

There are two different scenarios of interest from the viewpoint of perfor-
mance. The first is the initial synchronization and loading, when the software
starts from a clean state and does a full read of all the data. The second is
an incremental update, where the software starts with a local repository and
database that reflects the state at the time of last execution, and then reads
only the changes to the current state. The amount of work required for an in-
cremental update depends on the number of objects added, modified, or deleted
since the previous update, which in turn depends in large part on the time since
the previous update. We anticipate that an update will be performed roughly
once a day; since the number of objects updated in this time period is typi-
cally only a fraction of the total number of objects, we focused on the initial
synchronization and load as the performance bottleneck. We also evaluated the
performance of the load operation when cryptographic validation is omitted, in
order to give us an estimate of how much time was spent in validation.
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Our test for the initial synchronization and load for the non-ROA objects
involved 22,633 certificates and 10,528 CRLs. The total time required was 20
minutes and 2 seconds. This is divided into the time for synchronization with
the remote repository, which required 426 seconds (about 3.1 minutes), and the
time for the load, which required 776 seconds (12.9 minutes). The synchroniza-
tion time depends strongly on the network throughput, while the load time
depends on the speed of the local computer. Note that if we had broken the data
into five separate remote repositories, 80% of the time for synchronization could
have been executed in parallel with the load, hence reducing the time by around
340 seconds (about 5.6 minutes). We anticipate that an incremental synchro-
nization and load would be well under a minute, although we were not able to
test this because the repository was not being updated when we performed our
experiments. Without cryptographic validation, the time for the load was 226
seconds (about 3.7 minutes); since the average validation path was three or four
certificates long, we could have saved roughly 400 seconds (about 6.6 minutes)
by validating only the last link in the chain (knowing that the remainder of the
chain has already been validated).

We generated 10,000 ROAs to be loaded (but not synchronized because we
stored them locally). We do not know how many ROAs will be in real system
if this approach is adopted, but this should be within an order of magnitude of
the actual number. In a real system, after the RIR and occasional NIR tier, one
would expect each CA certificate to be accompanied by at least one EE certificate
and on ROA. The number 10,000 is consistent with our 22k certificates and 10k
CRLs, on the basis of this reasoning. Loading these ROAs required 281 seconds
(about 4.7 minutes).

The remaining question then is how long it takes to generate a file containing
the BGP output values specified by these 10,000 ROAs, since this operation will
need to be performed every day. The answer is 297 seconds (about 5 minutes).
We have already identified a potential modification to the ROA validation step
(involving putting more of the ROA data fields in the database), however, and
anticipate that this time can be dramatically reduced. Initial experiments indi-
cate that if this proposed modification is implemented, the total amount of time
to process all 10,000 ROAs could be reduced to less than ten seconds.

It is worthwhile to note that an alternate implementation of RPKI valida-
tion has been carried out at ISC [22]. This code contains an implementation of
validation as an integrated part of rsync, their combined version being called
“rcynic”. It also contains a variety of Python scripts for manipulating certificate
and CRL information in a database. While this might appear similar to our
RPKI software, BBN’s focus has been on generating an end-to-end solution that
is optimized for ROA validation and BGP output file generation, and thus we
believe that the two are not directly comparable.
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5 Conclusion

This paper has described BBN’s implementation of a software suite for a re-
source PKI in which the resources are certificates, CRLs and, most importantly
ROAs. The RPKI software performs all the syntactic and semantic validation
steps necessary in order to arrive at a set of trusted AS# to IP-address block
assignments that can be used to generate BGP filters. In the course of creating
the RPKI software, a novel deferred validation algorithm was developed. The
algorithm was optimized for the “validate everything” paradigm of the RPKI.
Performance testing indicates that even for very large repositories it will be pos-
sible to perform a complete filter generation run on a daily basis. The RPKI
continues to evolve as aspects of the RPKI itself evolve.
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