
Adaptive UGV Navigation using Advocates and Critics 

for Tactical Behaviors 
 

Talib Hussain, Gordon Vidaver, David Montana 

BBN Technologies 

Ph: 617-873-8000, Fax: 617-873-4328 

{thussain, gvidaver, dmontana} @ bbn.com,  www.bbn.com 

 

ABSTRACT 

We present a system for highly adaptive navigation and control of unmanned ground vehicles that 

produces explicit, appropriate and understandable tactical behaviors.  The system is based upon the 

use of an evolutionary algorithm to explore tactical alternatives for continual path and action 

planning to achieve mission objectives within a dynamic environment that may contain unknown 

terrain characteristics and one or more active enemy ground units with unknown tactical objectives 

and capabilities.  Our system evaluates the relative merits of a number of “small changes” to a plan 

(made with multiple different planning rationales) as the tactical situation changes over time.  We 

present a summary of simulation-based work we have conducted for the Army and discuss efforts to 

incorporate learning capabilities into the system. 

1. INTRODUCTION 

Today’s unmanned ground vehicles demonstrate mobility systems that are effective at navigating 

through known types of terrain to visit pre-determined locations while avoiding known classes of 

obstacles that are typically fixed or slow-moving.  When they encounter unexpected situations (i.e., 

for which they have not been programmed), they often fail and/or require human intervention to 



overcome the problem.  Military needs will require these systems to improve along two key 

dimensions.  On the one hand, UGVs will need to be able to (a) navigate effectively through 

complex terrain that has not been encountered before, and (b) accommodate uncertain, incomplete, 

dynamic and/or incorrect knowledge.  On the other hand, UGVs will need to be able to (c) develop 

and execute plans to carry out higher-level mission goals (such as reconnaissance, surveillance, and 

target acquisition) and (d) respond rapidly and effectively to threats posed by mobile and intelligent 

enemy units. [1] 

BBN has developed the Advocates and Critics for Tactical Behaviors (ACTB) approach, a 

navigation and control technique based upon the incorporation of tactical goals and behaviors into 

an evolutionary-based planning framework [2].  Our goal is to explore methods for enabling UGVs 

that perform in meaningful tactical ways while accomplishing their mission goals under a variety of 

known and novel situations.  In particular, ACTB focuses upon “adaptive planning”, in which the 

system uses fixed and random planning capabilities to dynamically replan as time passes and/or as 

the tactical situation changes (or “Changing the decisions we make”).  In an Army Research Lab 

(ARL) sponsored project, the performance of an ACTB system was tested in simulation and shown 

to produce adaptive responses to dynamic tactical situations [3].   

We present the details of the ACTB approach, summarize the results of the performance 

tests and discuss avenues for extending ACTB with the capability to learn from experience to 

improve its planning capabilities over time (or “Changing the way we make decisions”). 

2. UGV NAVIGATION 

In response to an environment and a set of mission requirements that are dynamically changing, a 

UGV navigation system must perform replanning of both the reactive (e.g., avoid an obstacle or 



turn to run away from an enemy) and deliberative (e.g., modify entire path to circumvent an enemy 

and remain hidden en route to next mission goal) varieties.  While there has been some previous 

work done on deliberative planning for robots and UGVs, there has been much more practical work 

in the reactive planning area [4-8]. 

Our approach is to view the deliberative planning problem as an optimization problem to 

determine an operation plan for one or more UGVs that achieves multiple mission goals while 

satisfying multiple tactical criteria as best as possible based upon the most recent knowledge 

available.  We view the reactive planning problem as multiple sub-problems, some of which are 

amenable to autonomic processes that require very little information or adaptation (and hence may 

be programmed in detail), and some of which require intelligent exploration of alternative actions.  

In particular, we apply an evolutionary algorithm to perform the deliberative and intelligent reactive 

planning based on explicit tactical behaviors, and provide a mechanism for triggering autonomic 

processes when appropriate. 

Prior work has explored the use of behavior-based navigation for reactive planning [4,5] and 

the use of evolutionary algorithms for robot path planning and vehicle routing [7,8].  The work 

closest to our approach is the Distributed Architecture for Mobile Navigation (DAMN) [4], which 

provides a sophisticated reactive control component.  DAMN contains behaviors, each of which 

represent some higher-level navigation goals, such as ‘road following’, ‘seeking the next navigation 

goal’, ‘obstacle avoidance’, ‘avoid hazards’.  Each behavior provides a vote on the next direction to 

take, and a command arbiter decides upon the best direction, which is then taken by the UGV.  

While most of the behaviors are reactive, there is one behavioral input from a deliberative planner 

called the global navigator [5].  The global navigator is capable of determining a full path to a goal 

position using a D* (dynamic A*) search algorithm.  However, this approach does not incorporate 



as many criteria and as much information at the deliberative planning level as we believe are 

necessary for robust performance under varying conditions. 

3. ACTB ARCHITECTURE 

The Advocates and Critics for Tactical Behavior architecture is illustrated in Figure 1.  The figure 

shows planning and control for a simulated UGV that may be controlled via five basic commands: 

move to a given geographical location, stop movement, look in a given direction by rotating the 

camera, aim the gun in a given direction, and fire the gun.  In general, planning may be performed 

for one or more vehicles [2].  ACTB incorporates three main components: a continual planning 

cycle based on tactical advocates and critics, a mechanism based on attitudes for influencing the 

nature of the planning performed, and autonomic control mechanisms. 

The plan for each vehicle is a description for proposed UGV actions into the future, and 

specifies a sequence of move and/or “stop and look” commands.  The plan does not specify any gun 

aiming or firing commands.  During execution, a single plan is initially selected.  A contiguous 

sequence of waypoints is passed directly to the simulator as a sequence of corresponding moves.  A 

stop and look command is associated with the immediately preceding waypoint – when the vehicle 

arrives at that waypoint, it will stop and slew its camera to the indicated angle.  When the camera is 

fully turned, the next action in the plan will be executed.  If that is another stop and look command, 

the vehicle will remain at the same waypoint until that look is completed.  Otherwise the next 

appropriate sequence of move commands will be issued.  

The primary component of ACTB is a continual tactical planning cycle that is influenced by 

changes in the state of knowledge about the world.  Initially, the planning process starts with a set 

of new plans that are generated randomly based on the initial world conditions.   The new plans are 



evaluated by a set of tactical critics to determine their effectiveness.  Critics examine each plan and 

evaluate its entire length based on that critic’s tactical criteria (e.g., traversability, safety, mission 

success, exposure risk or situational awareness).  The weighted sum of the critic evaluations 

produces a single score for the plan.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: ACTB Architecture 

Once all the new plans are scored, they are ranked with respect to each other and to plans 

from previous cycles.  The highest ranked plan is always selected as the current plan for execution, 

and some of the lowest ranked plans are eliminated.  As the planning cycle continues, some of the 

ranked plans are modified by a set of tactical advocates.  Advocates examine an existing plan and, 

when appropriate, create one or more new plans that better meet that advocate’s goal (e.g., get away 

UGV 

An attitude is a consistent set of 
advocates and critics, and their 
relative importance, that produces 
a specific behavioral emphasis. 

Critics independently evaluate 
all plans.  Each plan is assigned 
a single score based on the 
evaluations of all the critics. 

Move, stop and look 

Advocates independently create 
new plans by making changes to 
existing plans.  Better plans are 
chosen for further improvement. 

Autonomic 
Control 

Aim, fire 

Attitude 



from the enemy faster, surveil before entering new territory, maintain cover near walls, or head 

towards the mission objectives).  Most advocates make a small, incremental change (e.g., by 

modifying a few move, stop or look commands). The change may occur anywhere in the plan. 

Generally, planning continues indefinitely as the new plans generated by the advocates are 

in turn evaluated by the critics, and so on.  During any given cycle, plans are adapted based on the 

most recent knowledge in the COP.  Deliberative planning is achieved through the use of advocates 

that make changes to any part of a plan.  Intelligent reactive planning is achieved through the use of 

advocates that focus upon the immediate path and actions of the vehicle.  Adaptive planning is 

achieved through the continual planning cycle since new knowledge and events will be seamlessly 

incorporated.  For example, a newly discovered obstacle may make a critic evaluate a previously 

good plan as a bad one since it tries to make the UGV go through that obstacle. 

While the continual planning cycle enables ACTB to be adaptive to changes in the world, it 

is not always sufficient to enable ACTB to provide robust, timely response under tactically 

significant changes.  While a large number of advocates and critics may enable a very rich search 

for new plans, that search will tend to be slow (i.e., trying to solve one difficult optimization 

problem).  To speed up the search while maintaining effectiveness, the ACTB architecture 

incorporates high-level strategic ”rules of engagement” that influence the manner in which planning 

is performed by changing its attitude.  An attitude reflects a bias in the tactical behaviors used in the 

planning process.  Specifically, an attitude is a consistent set of advocates and critics, each with 

certain probabilities of selection and weights, respectively (i.e., ACTB uses attitudes to solve 

several simpler optimization problems). 

The strategic rules define the tactical conditions under which the system will transition from 

one attitude to another.  For example, during a mission it may be appropriate under different 



conditions for a UGV to become more cautious (e.g., it doesn’t know where the enemy is so try to 

stay out of sight) or more aggressive (e.g., the enemy is in the way of achieving the mission, so 

close and attack).   

The ACTB planning cycle is rapid, especially with the use of attitudes.  However, it is not 

appropriate for all vehicle control.  Within our architecture, autonomic behaviors may be defined 

that are triggered based on certain tactical situations.  The behaviors must operate independently of 

any planned actions.  For instance, as illustrated in Figure 1, autonomic behaviors for gun control 

may be defined that operate independently of any planned move or stop-and-look actions. 

4. TACTICAL PLANNING AND CONTROL 

In an ARL-sponsored project, we developed a 

tactical navigation system based upon ACTB for 

controlling a single UGV.  The system was 

tested in simulation.  The simulator, developed 

by General Dynamics Robotics Systems 

(GDRS), defined a binary terrain and simulated 

UGVs.  Figure 2 illustrates one terrain used in the 

test trials, where white represents clear areas and 

black represents obstacles.  The mission objectives of the vehicle were to visit up to three target 

“flag” locations, and either kill any enemies discovered or survive for a fixed period of time 

(typically 10 to 20 minutes).  The tactical navigation system was required to be robust to changes in 

the terrain, the number of enemies (one or two) and the location of the flags. 

 

Figure 2: Simulated terrain 



The simulated UGV platform had a gun turret and a camera, and could be controlled via five 

basic commands: move to a given geographical location, stop movement, look in a given direction 

by rotating the camera, aim the gun in a given direction, and fire the gun.  Further, upon request, the 

simulator provided information about the world.  The ACTB approach was used to develop a 

system with nine tactical critics, a number of tactical advocates, four attitudes and three autonomic 

behaviors. 

4.1. Critics 

The critics used were: 

• Traversability, which penalizes travel through obstacles over all portions of the path. 

• Safety, which evaluates how long a plan puts the UGV within firing range of the enemy.  

• Proximity, which rewards plans that quickly move the UGV out of the proximity of a 

currently observed enemy. 

• Time-to-Mission, which rewards paths that take less time to visit the flags. 

• Mission-success, which penalizes plans based on the number of flags that are not visited. 

• Exposure, which penalizes a path based upon the sum of the exposure risk over all point in 

the plan.  Exposure risk of a point is defined as the size of the area co-visible with that point. 

• Lingering, which rewards plans that move the UGV to areas that have not been visited 

recently. Without such a critic, the best option might be to remain in one location since it is 

safe, scanned and enemy-free. 

• Complexity, which penalizes plans with many short segments. 

• Awareness, which rewards plans that make the UGV look towards areas not recently 

scanned prior to entering them (e.g., look around a corner first).  Figure 3 illustrates the 



awareness computation made for a given plan.  The plan (Figure 3a) is comprised of both 

planned moves (dark gray arrows) and looks (light gray angles).  The plan defines a path 

towards the known flag (gray circle).  Figure 3b illustrates the viewable area that is scanned 

before entering (empty cones) and the viewable area that is not scanned (dark gray areas).   

 

 

 

 

 

 

 

 

 

Figure 3: Illustration of the computation of the awareness critic 

4.2. Advocates 

The advocates used included: 

• Insert-Flag, which exploits knowledge of the mission to improve plans that do not visit all 

remaining flags by insert appropriate waypoints to visit them into new plans. 

• Skulk Gradient, which exploits knowledge about the exposure risk to identify a path 

segment that is highly exposed and move its endpoints in the direction of lower exposure 

based on the exposure gradient at those points.  Figure 4a illustrates a plan in which the 
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skulk gradient advocate has played a significant role - the path tends to stay near cover (i.e., 

walls) and avoid open areas. 

• Peek, which exploits knowledge about the terrain and exposure risk to identify a path 

segment where there is a large transition from low risk to high risk of exposure and insert a 

“stop and look” command at that transition.  This will generally lead to an improved score 

on the awareness critic.  Figure 4b illustrates the result of applying the peek advocate – a 

look is inserted on the path just prior to end of an obstacle, enabling the UGV to see around 

the “corner” before reaching it. 

 

 

 

 

 

 

Figure 4: Illustration of the effects of skulk gradient and peek advocates 

• Go-Around, which replaces a section of the path that crosses an obstacle or passes close to 

an enemy with a new sequence of waypoints that form a circular path (either clockwise or 

counter-clockwise) around the obstacle/enemy.   

• Wall Trace, which replaces a section of the path with a sequence of waypoints that moves 

the UGV along the contour of a nearby obstacle.  
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• To ensure a rich evolutionary search, several random advocates were also used, including: 

insert-waypoint (which inserts a new waypoint at a random position in the plan), insert-look 

(which inserts a stop-and-look action at a random position in the plan), remove-section 

(which randomly selects two actions in the plan and removes them and all actions between 

them), and plan-crossover (which performs variable-length one-point crossover between 

two plans). 

4.3. Attitudes 

The attitudes used were:  

• Mission-Oriented, which places emphasis on achieving the mission objectives quickly by 

encouraging travel to new regions and allowing some risk. 

• Cautious, which places emphasis on stealthy exploration.  

• Flee, which places emphasis on getting away from the enemy rather than accomplishing the 

mission or planning looks.  

• Fight, which places emphasis on achieving the mission while maintaining maneuverability, 

with safety as a low factor. 

Attitude Critic 
Cautious Flee Fight Mission-Oriented 

Traversability     
Safety   Low Low 
Proximity   Low Low 
Exposure  n/a n/a  
Awareness  n/a n/a Low 
Time-To-Flag  Low Low High 
Mission-Success  Low Low  
Lingering n/a n/a n/a High 
Complexity  Low  High 

Table 1: Critics used in each attitude and their weights relative to default. 



The relative difference in the critic weights between attitudes is summarized in Table 1.  A 

critic could be used with the default weight (medium gray), a low weight (light gray), a high weight 

(dark gray) or not at all (n/a).   

The attitudes were used to influence the ACTB planning cycle based on the tactical 

situation.  Figure 5 illustrates the tactical situations that triggered transitions in the attitude. The 

strategy represented by Figure 5 reflects our expectation that the enemies would be highly 

aggressive and likely to guard the flags. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Rules of engagement select the attitude based on the current tactical situation 
 

5. RESULTS 
 
During several days in September 2004, our tactical behavior system was tested directly against the 

systems of two other competing project members.  Two sets of trials were conducted.  In the first 

set, 60 one-on-one trials were conducted, with each team’s vehicle competing 20 times against each 
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opponent.   In the second set, 132 trials were conducted, with each system participating one-on-one 

against each competitor 36 times and against both competitors 24 times.  Different trials used 

different terrain variations, such as the addition of obstacles, the removal of entire obstacles, and the 

partial removal of some obstacles (e.g., a “path” through a “wall”).   

The results of the trials are shown in Tables 2-4.  Three types of aggregate data are 

summarized for each team: the number of flags visited over all trials, the number of enemy kills 

made, and the number of times the vehicle survived until end of the trial.   

 
 # Flags Visited 

(out of 120) 
# Kills 

(out of 40) 
# Survivals 
(out of 40) 

BBN 78 13 30 
Competitor 1 27 7 26 
Competitor 2 62 13 23 

Table 2: Aggregate results of first set of testing trials 

 
 # Flags Visited 

(out of 480) 
# Kills 

(out of 120) 
# Survivals 
(out of 96) 

BBN 182 13 48 
Competitor 1 32 5 71 
Competitor 2 193 65 86 

Table 3: Aggregate results of second set of testing trials 

 
 # Flags Visited 

(out of 180) 
# Kills 

(out of 36) 
# Survivals 
(out of 36) 

BBN 61 5 10 
Competitor 2 56 26 31 

Table 4: Head-to-head testing results between BBN and Competitor 2 in second set of trials 
 
In the first set of trials, our system performed better than both competitors.  We made a large 

number of kills, captured a large percentage of the flags (65%) and had a higher survival rate than 

our opponents (75%).  In the second set of trials, our system performed very poorly relative to 

Competitor 2 in terms of our ability to target and shoot the enemy.  However, we outperformed both 



opponents in terms of our ability to capture flags (e.g., in head-to-head trials against Competitor 2, 

we were able to capture more flags despite being killed 72% of the time). 

In all trials, our system showed a rich set of timely responses and performed in noticeably 

tactical ways.  It did not always make the same decisions when faced with a similar situation, but 

still demonstrated tactical behaviors appropriate to those situations.  The performance was 

consistent with our high-level rules of engagement, and our autonomic behaviors and planned 

behaviors supported each other.  For example, our UGV would often flee from an enemy, but 

continue to target and fire at it; a number of kills were obtained in this way. 

6. CONCLUSIONS 

The development of effective tactical behaviors for unmanned ground vehicles is a critical area of 

research.  Our Advocates and Critics for Tactical Behaviors (ACTB) approach provides a rich 

planning and control architecture that enables us to incorporate a variety of competing tactical 

behaviors into a single planning system and explicitly define rules of engagement to achieve robust 

performance under different tactical situations.  Our approach to adaptive navigation has been 

shown to be effective against two other state-of-the-art approaches. 

A key avenue of our current research is the incorporation of learning capabilities into 

ACTB.  Learning to handle novel tactical situations requires the ability to not only identify that 

situation, but also to determine what the best type of tactical response is for that situation and how 

to execute that response.  For example, what does it mean to learn: 

1) Is this a dangerous situation? 4) How should I avoid what I need to avoid? 

2) What should I be looking for? 5) What is the best strategy to achieve my goal 

3) What will my adversary do next? 6) What is the best way to attack? 



Each key component of the original ACTB system may potentially be augmented with learning 

capabilities.  As illustrated in Table 5, each level has different issues and results in different benefits 

from the use of learning.  

ACTB Level Key Benefit of Learning Key Issue 

Autonomic  Improved accuracy of immediate-term actions Tightly scoped domain 

Advocate  Improved tactical responses through experience Frequent change, Explosion of components 

Critic Improved tactical reasoning in novel situations Maintaining commander’s intent 

Attitude Improved ability to handle multiple tactical situations Impact on system stability 

Table 5: Summary of the benefits and challenges for different levels of learning 

The partitioning of the solution into advocates, critics and attitudes in ACTB has enabled us 

to quickly design effective solutions by decomposing the problem into manageable “bites”  – it is 

easy to be an advocate for a specific behavior, it is easy to be a critic about what went wrong, and it 

is easy to associate broad priorities with certain key tactical situations.  We believe that the same 

“bite-size” approach will be critical for achieving effective learning of tactical behaviors.∗ 
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